MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnpropd Structured version   Visualization version   Unicode version

Theorem cmnpropd 18202
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ablpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ablpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
cmnpropd  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem cmnpropd
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ablpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ablpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 17316 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
53oveqrspc2v 6673 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
63oveqrspc2v 6673 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  B  /\  u  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
76ancom2s 844 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( v ( +g  `  K ) u )  =  ( v ( +g  `  L ) u ) )
85, 7eqeq12d 2637 . . . . 5  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
982ralbidva 2988 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  B  A. v  e.  B  ( u
( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
101raleqdv 3144 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
111, 10raleqbidv 3152 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) ) )
122raleqdv 3144 . . . . 5  |-  ( ph  ->  ( A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
132, 12raleqbidv 3152 . . . 4  |-  ( ph  ->  ( A. u  e.  B  A. v  e.  B  ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
149, 11, 133bitr3d 298 . . 3  |-  ( ph  ->  ( A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u )  <->  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) ( u ( +g  `  L ) v )  =  ( v ( +g  `  L
) u ) ) )
154, 14anbi12d 747 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) ( u ( +g  `  K ) v )  =  ( v ( +g  `  K
) u ) )  <-> 
( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) ) )
16 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
17 eqid 2622 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
1816, 17iscmn 18200 . 2  |-  ( K  e. CMnd 
<->  ( K  e.  Mnd  /\ 
A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) ( u ( +g  `  K
) v )  =  ( v ( +g  `  K ) u ) ) )
19 eqid 2622 . . 3  |-  ( Base `  L )  =  (
Base `  L )
20 eqid 2622 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
2119, 20iscmn 18200 . 2  |-  ( L  e. CMnd 
<->  ( L  e.  Mnd  /\ 
A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( u ( +g  `  L
) v )  =  ( v ( +g  `  L ) u ) ) )
2215, 18, 213bitr4g 303 1  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Mndcmnd 17294  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cmn 18195
This theorem is referenced by:  ablpropd  18203  crngpropd  18583  prdscrngd  18613  resvcmn  29838
  Copyright terms: Public domain W3C validator