MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmn Structured version   Visualization version   Unicode version

Theorem cntzcmn 18245
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzcmn.b  |-  B  =  ( Base `  G
)
cntzcmn.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
cntzcmn  |-  ( ( G  e. CMnd  /\  S  C_  B )  ->  ( Z `  S )  =  B )

Proof of Theorem cntzcmn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzcmn.b . . . 4  |-  B  =  ( Base `  G
)
2 cntzcmn.z . . . 4  |-  Z  =  (Cntz `  G )
31, 2cntzssv 17761 . . 3  |-  ( Z `
 S )  C_  B
43a1i 11 . 2  |-  ( ( G  e. CMnd  /\  S  C_  B )  ->  ( Z `  S )  C_  B )
5 simpl1 1064 . . . . . . 7  |-  ( ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  /\  y  e.  S )  ->  G  e. CMnd )
6 simpl3 1066 . . . . . . 7  |-  ( ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  /\  y  e.  S )  ->  x  e.  B )
7 simp2 1062 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  ->  S  C_  B )
87sselda 3603 . . . . . . 7  |-  ( ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  /\  y  e.  S )  ->  y  e.  B )
9 eqid 2622 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
101, 9cmncom 18209 . . . . . . 7  |-  ( ( G  e. CMnd  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
115, 6, 8, 10syl3anc 1326 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
1211ralrimiva 2966 . . . . 5  |-  ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  ->  A. y  e.  S  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
131, 9, 2cntzel 17756 . . . . . 6  |-  ( ( S  C_  B  /\  x  e.  B )  ->  ( x  e.  ( Z `  S )  <->  A. y  e.  S  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) ) )
14133adant1 1079 . . . . 5  |-  ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  ->  (
x  e.  ( Z `
 S )  <->  A. y  e.  S  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) )
1512, 14mpbird 247 . . . 4  |-  ( ( G  e. CMnd  /\  S  C_  B  /\  x  e.  B )  ->  x  e.  ( Z `  S
) )
16153expia 1267 . . 3  |-  ( ( G  e. CMnd  /\  S  C_  B )  ->  (
x  e.  B  ->  x  e.  ( Z `  S ) ) )
1716ssrdv 3609 . 2  |-  ( ( G  e. CMnd  /\  S  C_  B )  ->  B  C_  ( Z `  S
) )
184, 17eqssd 3620 1  |-  ( ( G  e. CMnd  /\  S  C_  B )  ->  ( Z `  S )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Cntzccntz 17748  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  cntzcmnss  18246  cntzcmnf  18248  ablcntzd  18260  gsumadd  18323
  Copyright terms: Public domain W3C validator