MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvuni Structured version   Visualization version   Unicode version

Theorem cnvuni 5309
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni  |-  `' U. A  =  U_ x  e.  A  `' x
Distinct variable group:    x, A

Proof of Theorem cnvuni
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 5300 . . . 4  |-  ( y  e.  `' U. A  <->  E. z E. w ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A ) )
2 eluni2 4440 . . . . . . 7  |-  ( <.
w ,  z >.  e.  U. A  <->  E. x  e.  A  <. w ,  z >.  e.  x
)
32anbi2i 730 . . . . . 6  |-  ( ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A )  <->  ( y  =  <. z ,  w >.  /\  E. x  e.  A  <. w ,  z
>.  e.  x ) )
4 r19.42v 3092 . . . . . 6  |-  ( E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
)  <->  ( y  = 
<. z ,  w >.  /\ 
E. x  e.  A  <. w ,  z >.  e.  x ) )
53, 4bitr4i 267 . . . . 5  |-  ( ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A )  <->  E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z
>.  e.  x ) )
652exbii 1775 . . . 4  |-  ( E. z E. w ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  U. A )  <->  E. z E. w E. x  e.  A  ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
7 elcnv2 5300 . . . . . 6  |-  ( y  e.  `' x  <->  E. z E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
87rexbii 3041 . . . . 5  |-  ( E. x  e.  A  y  e.  `' x  <->  E. x  e.  A  E. z E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
9 rexcom4 3225 . . . . 5  |-  ( E. x  e.  A  E. z E. w ( y  =  <. z ,  w >.  /\  <. w ,  z
>.  e.  x )  <->  E. z E. x  e.  A  E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x ) )
10 rexcom4 3225 . . . . . 6  |-  ( E. x  e.  A  E. w ( y  = 
<. z ,  w >.  /\ 
<. w ,  z >.  e.  x )  <->  E. w E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
) )
1110exbii 1774 . . . . 5  |-  ( E. z E. x  e.  A  E. w ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
)  <->  E. z E. w E. x  e.  A  ( y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
) )
128, 9, 113bitrri 287 . . . 4  |-  ( E. z E. w E. x  e.  A  (
y  =  <. z ,  w >.  /\  <. w ,  z >.  e.  x
)  <->  E. x  e.  A  y  e.  `' x
)
131, 6, 123bitri 286 . . 3  |-  ( y  e.  `' U. A  <->  E. x  e.  A  y  e.  `' x )
14 eliun 4524 . . 3  |-  ( y  e.  U_ x  e.  A  `' x  <->  E. x  e.  A  y  e.  `' x )
1513, 14bitr4i 267 . 2  |-  ( y  e.  `' U. A  <->  y  e.  U_ x  e.  A  `' x )
1615eqriv 2619 1  |-  `' U. A  =  U_ x  e.  A  `' x
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   <.cop 4183   U.cuni 4436   U_ciun 4520   `'ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-cnv 5122
This theorem is referenced by:  funcnvuni  7119
  Copyright terms: Public domain W3C validator