Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocanfo Structured version   Visualization version   Unicode version

Theorem cocanfo 33512
Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cocanfo  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  G  =  H )

Proof of Theorem cocanfo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  ( G  o.  F )  =  ( H  o.  F ) )
21fveq1d 6193 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  (
( G  o.  F
) `  y )  =  ( ( H  o.  F ) `  y ) )
3 simpl1 1064 . . . . . . 7  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  F : A -onto-> B )
4 fof 6115 . . . . . . 7  |-  ( F : A -onto-> B  ->  F : A --> B )
53, 4syl 17 . . . . . 6  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  F : A
--> B )
6 fvco3 6275 . . . . . 6  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( G  o.  F ) `  y
)  =  ( G `
 ( F `  y ) ) )
75, 6sylan 488 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  (
( G  o.  F
) `  y )  =  ( G `  ( F `  y ) ) )
8 fvco3 6275 . . . . . 6  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( H  o.  F ) `  y
)  =  ( H `
 ( F `  y ) ) )
95, 8sylan 488 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  (
( H  o.  F
) `  y )  =  ( H `  ( F `  y ) ) )
102, 7, 93eqtr3d 2664 . . . 4  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  ( G `  ( F `  y ) )  =  ( H `  ( F `  y )
) )
1110ralrimiva 2966 . . 3  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  A. y  e.  A  ( G `  ( F `  y
) )  =  ( H `  ( F `
 y ) ) )
12 fveq2 6191 . . . . . 6  |-  ( ( F `  y )  =  x  ->  ( G `  ( F `  y ) )  =  ( G `  x
) )
13 fveq2 6191 . . . . . 6  |-  ( ( F `  y )  =  x  ->  ( H `  ( F `  y ) )  =  ( H `  x
) )
1412, 13eqeq12d 2637 . . . . 5  |-  ( ( F `  y )  =  x  ->  (
( G `  ( F `  y )
)  =  ( H `
 ( F `  y ) )  <->  ( G `  x )  =  ( H `  x ) ) )
1514cbvfo 6544 . . . 4  |-  ( F : A -onto-> B  -> 
( A. y  e.  A  ( G `  ( F `  y ) )  =  ( H `
 ( F `  y ) )  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
163, 15syl 17 . . 3  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  ( A. y  e.  A  ( G `  ( F `  y ) )  =  ( H `  ( F `  y )
)  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
1711, 16mpbid 222 . 2  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  A. x  e.  B  ( G `  x )  =  ( H `  x ) )
18 eqfnfv 6311 . . . 4  |-  ( ( G  Fn  B  /\  H  Fn  B )  ->  ( G  =  H  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
19183adant1 1079 . . 3  |-  ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  ->  ( G  =  H  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
2019adantr 481 . 2  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  ( G  =  H  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
2117, 20mpbird 247 1  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  G  =  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator