| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf34lem5 | Structured version Visualization version Unicode version | ||
| Description: Lemma for isfin3-4 9204. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| compss.a |
|
| Ref | Expression |
|---|---|
| isf34lem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5477 |
. . . . . . 7
| |
| 2 | compss.a |
. . . . . . . . . 10
| |
| 3 | 2 | isf34lem2 9195 |
. . . . . . . . 9
|
| 4 | 3 | adantr 481 |
. . . . . . . 8
|
| 5 | frn 6053 |
. . . . . . . 8
| |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
|
| 7 | 1, 6 | syl5ss 3614 |
. . . . . 6
|
| 8 | simprl 794 |
. . . . . . . . . 10
| |
| 9 | fdm 6051 |
. . . . . . . . . . 11
| |
| 10 | 4, 9 | syl 17 |
. . . . . . . . . 10
|
| 11 | 8, 10 | sseqtr4d 3642 |
. . . . . . . . 9
|
| 12 | sseqin2 3817 |
. . . . . . . . 9
| |
| 13 | 11, 12 | sylib 208 |
. . . . . . . 8
|
| 14 | simprr 796 |
. . . . . . . 8
| |
| 15 | 13, 14 | eqnetrd 2861 |
. . . . . . 7
|
| 16 | imadisj 5484 |
. . . . . . . 8
| |
| 17 | 16 | necon3bii 2846 |
. . . . . . 7
|
| 18 | 15, 17 | sylibr 224 |
. . . . . 6
|
| 19 | 7, 18 | jca 554 |
. . . . 5
|
| 20 | 2 | isf34lem4 9199 |
. . . . 5
|
| 21 | 19, 20 | syldan 487 |
. . . 4
|
| 22 | 2 | isf34lem3 9197 |
. . . . . 6
|
| 23 | 22 | adantrr 753 |
. . . . 5
|
| 24 | 23 | inteqd 4480 |
. . . 4
|
| 25 | 21, 24 | eqtrd 2656 |
. . 3
|
| 26 | 25 | fveq2d 6195 |
. 2
|
| 27 | 2 | compsscnv 9193 |
. . . 4
|
| 28 | 27 | fveq1i 6192 |
. . 3
|
| 29 | 2 | compssiso 9196 |
. . . . . 6
|
| 30 | isof1o 6573 |
. . . . . 6
| |
| 31 | 29, 30 | syl 17 |
. . . . 5
|
| 32 | 31 | adantr 481 |
. . . 4
|
| 33 | sspwuni 4611 |
. . . . . 6
| |
| 34 | 7, 33 | sylib 208 |
. . . . 5
|
| 35 | elpw2g 4827 |
. . . . . 6
| |
| 36 | 35 | adantr 481 |
. . . . 5
|
| 37 | 34, 36 | mpbird 247 |
. . . 4
|
| 38 | f1ocnvfv1 6532 |
. . . 4
| |
| 39 | 32, 37, 38 | syl2anc 693 |
. . 3
|
| 40 | 28, 39 | syl5eqr 2670 |
. 2
|
| 41 | 26, 40 | eqtr3d 2658 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-rpss 6937 |
| This theorem is referenced by: isf34lem7 9201 |
| Copyright terms: Public domain | W3C validator |