Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbima12gALTVD Structured version   Visualization version   Unicode version

Theorem csbima12gALTVD 39133
Description: Virtual deduction proof of csbima12gALTOLD 39057. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12gALTOLD 39057 is csbima12gALTVD 39133 without virtual deductions and was automatically derived from csbima12gALTVD 39133.
1::  |-  (. A  e.  C  ->.  A  e.  C ).
2:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F  |`  B )  =  (  [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
3:2:  |-  (. A  e.  C  ->.  ran  [_ A  /  x ]_ ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
4:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  [_ A  /  x ]_ ( F  |`  B ) ).
5:3,4:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
6::  |-  ( F " B )  =  ran  ( F  |`  B )
7:6:  |-  A. x ( F " B )  =  ran  ( F  |`  B )
8:1,7:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B )  =  [_  A  /  x ]_ ran  ( F  |`  B ) ).
9:5,8:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
10::  |-  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B )
11:9,10:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B )  =  (  [_ A  /  x ]_ F " [_ A  /  x ]_ B ) ).
qed:11:  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F " B )  =  ( [_  A  /  x ]_ F " [_ A  /  x ]_ B ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbima12gALTVD  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )

Proof of Theorem csbima12gALTVD
StepHypRef Expression
1 idn1 38790 . . . . . . 7  |-  (. A  e.  C  ->.  A  e.  C ).
2 csbresgOLD 39055 . . . . . . 7  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F  |`  B )  =  (
[_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) )
31, 2e1a 38852 . . . . . 6  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F  |`  B )  =  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
4 rneq 5351 . . . . . 6  |-  ( [_ A  /  x ]_ ( F  |`  B )  =  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B )  ->  ran  [_ A  /  x ]_ ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) )
53, 4e1a 38852 . . . . 5  |-  (. A  e.  C  ->.  ran  [_ A  /  x ]_ ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
6 csbrngOLD 39056 . . . . . 6  |-  ( A  e.  C  ->  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  [_ A  /  x ]_ ( F  |`  B ) )
71, 6e1a 38852 . . . . 5  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  [_ A  /  x ]_ ( F  |`  B ) ).
8 eqeq2 2633 . . . . . 6  |-  ( ran  [_ A  /  x ]_ ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |` 
[_ A  /  x ]_ B )  ->  ( [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  [_ A  /  x ]_ ( F  |`  B )  <->  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ) )
98biimpd 219 . . . . 5  |-  ( ran  [_ A  /  x ]_ ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |` 
[_ A  /  x ]_ B )  ->  ( [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  [_ A  /  x ]_ ( F  |`  B )  ->  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ) )
105, 7, 9e11 38913 . . . 4  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
11 df-ima 5127 . . . . . 6  |-  ( F
" B )  =  ran  ( F  |`  B )
1211ax-gen 1722 . . . . 5  |-  A. x
( F " B
)  =  ran  ( F  |`  B )
13 csbeq2gOLD 38765 . . . . 5  |-  ( A  e.  C  ->  ( A. x ( F " B )  =  ran  ( F  |`  B )  ->  [_ A  /  x ]_ ( F " B
)  =  [_ A  /  x ]_ ran  ( F  |`  B ) ) )
141, 12, 13e10 38919 . . . 4  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B
)  =  [_ A  /  x ]_ ran  ( F  |`  B ) ).
15 eqeq2 2633 . . . . 5  |-  ( [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |` 
[_ A  /  x ]_ B )  ->  ( [_ A  /  x ]_ ( F " B
)  =  [_ A  /  x ]_ ran  ( F  |`  B )  <->  [_ A  /  x ]_ ( F " B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ) )
1615biimpd 219 . . . 4  |-  ( [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |` 
[_ A  /  x ]_ B )  ->  ( [_ A  /  x ]_ ( F " B
)  =  [_ A  /  x ]_ ran  ( F  |`  B )  ->  [_ A  /  x ]_ ( F " B
)  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ) )
1710, 14, 16e11 38913 . . 3  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B
)  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ).
18 df-ima 5127 . . 3  |-  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B )
19 eqeq2 2633 . . . 4  |-  ( (
[_ A  /  x ]_ F " [_ A  /  x ]_ B )  =  ran  ( [_ A  /  x ]_ F  |` 
[_ A  /  x ]_ B )  ->  ( [_ A  /  x ]_ ( F " B
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ B )  <->  [_ A  /  x ]_ ( F " B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) ) )
2019biimprcd 240 . . 3  |-  ( [_ A  /  x ]_ ( F " B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B )  ->  (
( [_ A  /  x ]_ F " [_ A  /  x ]_ B )  =  ran  ( [_ A  /  x ]_ F  |` 
[_ A  /  x ]_ B )  ->  [_ A  /  x ]_ ( F
" B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) ) )
2117, 18, 20e10 38919 . 2  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " B
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ B ) ).
2221in1 38787 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    = wceq 1483    e. wcel 1990   [_csb 3533   ran crn 5115    |` cres 5116   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator