MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov Structured version   Visualization version   Unicode version

Theorem csbov 6688
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov  |-  [_ A  /  x ]_ ( B F C )  =  ( B [_ A  /  x ]_ F C )
Distinct variable groups:    x, B    x, C
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem csbov
StepHypRef Expression
1 csbov123 6687 . 2  |-  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
)
2 csbconstg 3546 . . . 4  |-  ( A  e.  _V  ->  [_ A  /  x ]_ B  =  B )
3 csbconstg 3546 . . . 4  |-  ( A  e.  _V  ->  [_ A  /  x ]_ C  =  C )
42, 3oveq12d 6668 . . 3  |-  ( A  e.  _V  ->  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C )  =  ( B [_ A  /  x ]_ F C ) )
5 0fv 6227 . . . . 5  |-  ( (/) ` 
<. B ,  C >. )  =  (/)
6 df-ov 6653 . . . . 5  |-  ( B
(/) C )  =  ( (/) `  <. B ,  C >. )
7 df-ov 6653 . . . . . 6  |-  ( [_ A  /  x ]_ B (/) [_ A  /  x ]_ C )  =  (
(/) `  <. [_ A  /  x ]_ B ,  [_ A  /  x ]_ C >. )
8 0fv 6227 . . . . . 6  |-  ( (/) ` 
<. [_ A  /  x ]_ B ,  [_ A  /  x ]_ C >. )  =  (/)
97, 8eqtri 2644 . . . . 5  |-  ( [_ A  /  x ]_ B (/) [_ A  /  x ]_ C )  =  (/)
105, 6, 93eqtr4ri 2655 . . . 4  |-  ( [_ A  /  x ]_ B (/) [_ A  /  x ]_ C )  =  ( B (/) C )
11 csbprc 3980 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ F  =  (/) )
1211oveqd 6667 . . . 4  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C )  =  ( [_ A  /  x ]_ B (/) [_ A  /  x ]_ C ) )
1311oveqd 6667 . . . 4  |-  ( -.  A  e.  _V  ->  ( B [_ A  /  x ]_ F C )  =  ( B (/) C ) )
1410, 12, 133eqtr4a 2682 . . 3  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C )  =  ( B [_ A  /  x ]_ F C ) )
154, 14pm2.61i 176 . 2  |-  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C )  =  ( B [_ A  /  x ]_ F C )
161, 15eqtri 2644 1  |-  [_ A  /  x ]_ ( B F C )  =  ( B [_ A  /  x ]_ F C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   (/)c0 3915   <.cop 4183   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  mptcoe1matfsupp  20607  mp2pm2mplem4  20614
  Copyright terms: Public domain W3C validator