MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov123 Structured version   Visualization version   Unicode version

Theorem csbov123 6687
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov123  |-  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
)

Proof of Theorem csbov123
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3536 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ ( B F C )  = 
[_ A  /  x ]_ ( B F C ) )
2 csbeq1 3536 . . . . 5  |-  ( y  =  A  ->  [_ y  /  x ]_ F  = 
[_ A  /  x ]_ F )
3 csbeq1 3536 . . . . 5  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
4 csbeq1 3536 . . . . 5  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
52, 3, 4oveq123d 6671 . . . 4  |-  ( y  =  A  ->  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
61, 5eqeq12d 2637 . . 3  |-  ( y  =  A  ->  ( [_ y  /  x ]_ ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )  <->  [_ A  /  x ]_ ( B F C )  =  (
[_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) ) )
7 vex 3203 . . . 4  |-  y  e. 
_V
8 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
9 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ y  /  x ]_ F
10 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ y  /  x ]_ C
118, 9, 10nfov 6676 . . . 4  |-  F/_ x
( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C )
12 csbeq1a 3542 . . . . 5  |-  ( x  =  y  ->  F  =  [_ y  /  x ]_ F )
13 csbeq1a 3542 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
14 csbeq1a 3542 . . . . 5  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1512, 13, 14oveq123d 6671 . . . 4  |-  ( x  =  y  ->  ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C
) )
167, 11, 15csbief 3558 . . 3  |-  [_ y  /  x ]_ ( B F C )  =  ( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C
)
176, 16vtoclg 3266 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
) )
18 csbprc 3980 . . 3  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ ( B F C )  =  (/) )
19 df-ov 6653 . . . 4  |-  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C )  =  ( [_ A  /  x ]_ F `  <. [_ A  /  x ]_ B ,  [_ A  /  x ]_ C >. )
20 csbprc 3980 . . . . . 6  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ F  =  (/) )
2120fveq1d 6193 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ F `  <. [_ A  /  x ]_ B ,  [_ A  /  x ]_ C >. )  =  (
(/) `  <. [_ A  /  x ]_ B ,  [_ A  /  x ]_ C >. ) )
22 0fv 6227 . . . . 5  |-  ( (/) ` 
<. [_ A  /  x ]_ B ,  [_ A  /  x ]_ C >. )  =  (/)
2321, 22syl6eq 2672 . . . 4  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ F `  <. [_ A  /  x ]_ B ,  [_ A  /  x ]_ C >. )  =  (/) )
2419, 23syl5req 2669 . . 3  |-  ( -.  A  e.  _V  ->  (/)  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
2518, 24eqtrd 2656 . 2  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
2617, 25pm2.61i 176 1  |-  [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   (/)c0 3915   <.cop 4183   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  csbov  6688  csbov12g  6689  relowlpssretop  33212  rdgeqoa  33218
  Copyright terms: Public domain W3C validator