Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgeqoa Structured version   Visualization version   Unicode version

Theorem rdgeqoa 33218
Description: If a recursive function with an initial value  A at step  N is equal to itself with an initial value  B at step  M, then every finite number of successor steps will also be equal. (Contributed by ML, 21-Oct-2020.)
Assertion
Ref Expression
rdgeqoa  |-  ( ( N  e.  On  /\  M  e.  On  /\  X  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  X ) )  =  ( rec ( F ,  B ) `  ( M  +o  X
) ) ) )

Proof of Theorem rdgeqoa
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . 2  |-  ( ( N  e.  On  /\  M  e.  On  /\  X  e.  om )  ->  X  e.  om )
2 eleq1 2689 . . . . 5  |-  ( x  =  X  ->  (
x  e.  om  <->  X  e.  om ) )
323anbi3d 1405 . . . 4  |-  ( x  =  X  ->  (
( N  e.  On  /\  M  e.  On  /\  x  e.  om )  <->  ( N  e.  On  /\  M  e.  On  /\  X  e.  om ) ) )
4 oveq2 6658 . . . . . . 7  |-  ( x  =  X  ->  ( N  +o  x )  =  ( N  +o  X
) )
54fveq2d 6195 . . . . . 6  |-  ( x  =  X  ->  ( rec ( F ,  A
) `  ( N  +o  x ) )  =  ( rec ( F ,  A ) `  ( N  +o  X
) ) )
6 oveq2 6658 . . . . . . 7  |-  ( x  =  X  ->  ( M  +o  x )  =  ( M  +o  X
) )
76fveq2d 6195 . . . . . 6  |-  ( x  =  X  ->  ( rec ( F ,  B
) `  ( M  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  X
) ) )
85, 7eqeq12d 2637 . . . . 5  |-  ( x  =  X  ->  (
( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  <-> 
( rec ( F ,  A ) `  ( N  +o  X
) )  =  ( rec ( F ,  B ) `  ( M  +o  X ) ) ) )
98imbi2d 330 . . . 4  |-  ( x  =  X  ->  (
( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) )  <->  ( ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  ( rec ( F ,  A
) `  ( N  +o  X ) )  =  ( rec ( F ,  B ) `  ( M  +o  X
) ) ) ) )
103, 9imbi12d 334 . . 3  |-  ( x  =  X  ->  (
( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  <-> 
( ( N  e.  On  /\  M  e.  On  /\  X  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  X ) )  =  ( rec ( F ,  B ) `  ( M  +o  X
) ) ) ) ) )
11 peano1 7085 . . . . 5  |-  (/)  e.  om
12 oa0 7596 . . . . . . . . . . . 12  |-  ( N  e.  On  ->  ( N  +o  (/) )  =  N )
1312fveq2d 6195 . . . . . . . . . . 11  |-  ( N  e.  On  ->  ( rec ( F ,  A
) `  ( N  +o  (/) ) )  =  ( rec ( F ,  A ) `  N ) )
1413eqcomd 2628 . . . . . . . . . 10  |-  ( N  e.  On  ->  ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  A ) `  ( N  +o  (/) ) ) )
15 oa0 7596 . . . . . . . . . . . 12  |-  ( M  e.  On  ->  ( M  +o  (/) )  =  M )
1615fveq2d 6195 . . . . . . . . . . 11  |-  ( M  e.  On  ->  ( rec ( F ,  B
) `  ( M  +o  (/) ) )  =  ( rec ( F ,  B ) `  M ) )
1716eqcomd 2628 . . . . . . . . . 10  |-  ( M  e.  On  ->  ( rec ( F ,  B
) `  M )  =  ( rec ( F ,  B ) `  ( M  +o  (/) ) ) )
1814, 17eqeqan12d 2638 . . . . . . . . 9  |-  ( ( N  e.  On  /\  M  e.  On )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  <->  ( rec ( F ,  A ) `  ( N  +o  (/) ) )  =  ( rec ( F ,  B ) `  ( M  +o  (/) ) ) ) )
1918biimpd 219 . . . . . . . 8  |-  ( ( N  e.  On  /\  M  e.  On )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  (/) ) )  =  ( rec ( F ,  B ) `  ( M  +o  (/) ) ) ) )
20 eleq1 2689 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( x  e.  om  <->  (/)  e.  om ) )
21203anbi3d 1405 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  <->  ( N  e.  On  /\  M  e.  On  /\  (/)  e.  om ) ) )
2211biantru 526 . . . . . . . . . . . 12  |-  ( M  e.  On  <->  ( M  e.  On  /\  (/)  e.  om ) )
2322anbi2i 730 . . . . . . . . . . 11  |-  ( ( N  e.  On  /\  M  e.  On )  <->  ( N  e.  On  /\  ( M  e.  On  /\  (/)  e.  om ) ) )
24 3anass 1042 . . . . . . . . . . 11  |-  ( ( N  e.  On  /\  M  e.  On  /\  (/)  e.  om ) 
<->  ( N  e.  On  /\  ( M  e.  On  /\  (/)  e.  om ) ) )
2523, 24bitr4i 267 . . . . . . . . . 10  |-  ( ( N  e.  On  /\  M  e.  On )  <->  ( N  e.  On  /\  M  e.  On  /\  (/)  e.  om ) )
2621, 25syl6bbr 278 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  <->  ( N  e.  On  /\  M  e.  On ) ) )
27 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( N  +o  x )  =  ( N  +o  (/) ) )
2827fveq2d 6195 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( rec ( F ,  A
) `  ( N  +o  x ) )  =  ( rec ( F ,  A ) `  ( N  +o  (/) ) ) )
29 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( M  +o  x )  =  ( M  +o  (/) ) )
3029fveq2d 6195 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( rec ( F ,  B
) `  ( M  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  (/) ) ) )
3128, 30eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( rec ( F ,  A ) `  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) )  <->  ( rec ( F ,  A ) `
 ( N  +o  (/) ) )  =  ( rec ( F ,  B ) `  ( M  +o  (/) ) ) ) )
3231imbi2d 330 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) )  <->  ( ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  ( rec ( F ,  A
) `  ( N  +o  (/) ) )  =  ( rec ( F ,  B ) `  ( M  +o  (/) ) ) ) ) )
3326, 32imbi12d 334 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  <-> 
( ( N  e.  On  /\  M  e.  On )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  (/) ) )  =  ( rec ( F ,  B ) `  ( M  +o  (/) ) ) ) ) ) )
3419, 33mpbiri 248 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) )
3534ax-gen 1722 . . . . . 6  |-  A. x
( x  =  (/)  ->  ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) )
36 sbc6g 3461 . . . . . 6  |-  ( (/)  e.  om  ->  ( [. (/)  /  x ]. ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  <->  A. x ( x  =  (/)  ->  ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) ) ) )
3735, 36mpbiri 248 . . . . 5  |-  ( (/)  e.  om  ->  [. (/)  /  x ]. ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) )
3811, 37ax-mp 5 . . . 4  |-  [. (/)  /  x ]. ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )
39 peano2b 7081 . . . . 5  |-  ( x  e.  om  <->  suc  x  e. 
om )
40393anbi3i 1255 . . . . . . . 8  |-  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  <->  ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om ) )
4140imbi1i 339 . . . . . . 7  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  <-> 
( ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) )
42 nnon 7071 . . . . . . . . . . . . 13  |-  ( x  e.  om  ->  x  e.  On )
43 oacl 7615 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  On  /\  x  e.  On )  ->  ( N  +o  x
)  e.  On )
44 oacl 7615 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  On  /\  x  e.  On )  ->  ( M  +o  x
)  e.  On )
4543, 44anim12i 590 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  On  /\  x  e.  On )  /\  ( M  e.  On  /\  x  e.  On ) )  -> 
( ( N  +o  x )  e.  On  /\  ( M  +o  x
)  e.  On ) )
46453impdir 1382 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  On )  ->  (
( N  +o  x
)  e.  On  /\  ( M  +o  x
)  e.  On ) )
47 rdgsuc 7520 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  +o  x )  e.  On  ->  ( rec ( F ,  A
) `  suc  ( N  +o  x ) )  =  ( F `  ( rec ( F ,  A ) `  ( N  +o  x ) ) ) )
48 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( ( rec ( F ,  A ) `  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) )  ->  ( F `  ( rec ( F ,  A ) `
 ( N  +o  x ) ) )  =  ( F `  ( rec ( F ,  B ) `  ( M  +o  x ) ) ) )
4947, 48sylan9eqr 2678 . . . . . . . . . . . . . . . . 17  |-  ( ( ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  /\  ( N  +o  x )  e.  On )  ->  ( rec ( F ,  A ) `  suc  ( N  +o  x ) )  =  ( F `  ( rec ( F ,  B
) `  ( M  +o  x ) ) ) )
5049adantrr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  /\  ( ( N  +o  x )  e.  On  /\  ( M  +o  x )  e.  On ) )  -> 
( rec ( F ,  A ) `  suc  ( N  +o  x
) )  =  ( F `  ( rec ( F ,  B
) `  ( M  +o  x ) ) ) )
51 rdgsuc 7520 . . . . . . . . . . . . . . . . 17  |-  ( ( M  +o  x )  e.  On  ->  ( rec ( F ,  B
) `  suc  ( M  +o  x ) )  =  ( F `  ( rec ( F ,  B ) `  ( M  +o  x ) ) ) )
5251ad2antll 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  /\  ( ( N  +o  x )  e.  On  /\  ( M  +o  x )  e.  On ) )  -> 
( rec ( F ,  B ) `  suc  ( M  +o  x
) )  =  ( F `  ( rec ( F ,  B
) `  ( M  +o  x ) ) ) )
5350, 52eqtr4d 2659 . . . . . . . . . . . . . . 15  |-  ( ( ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  /\  ( ( N  +o  x )  e.  On  /\  ( M  +o  x )  e.  On ) )  -> 
( rec ( F ,  A ) `  suc  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  suc  ( M  +o  x
) ) )
5446, 53sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  /\  ( N  e.  On  /\  M  e.  On  /\  x  e.  On ) )  -> 
( rec ( F ,  A ) `  suc  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  suc  ( M  +o  x
) ) )
5554ancoms 469 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  On )  /\  ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) ) )  ->  ( rec ( F ,  A ) `
 suc  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  suc  ( M  +o  x
) ) )
5642, 55syl3anl3 1376 . . . . . . . . . . . 12  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  /\  ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) ) )  ->  ( rec ( F ,  A ) `
 suc  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  suc  ( M  +o  x
) ) )
57 onasuc 7608 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  On  /\  x  e.  om )  ->  ( N  +o  suc  x )  =  suc  ( N  +o  x
) )
5857fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( N  e.  On  /\  x  e.  om )  ->  ( rec ( F ,  A ) `  ( N  +o  suc  x
) )  =  ( rec ( F ,  A ) `  suc  ( N  +o  x
) ) )
59583adant2 1080 . . . . . . . . . . . . 13  |-  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  ( rec ( F ,  A
) `  ( N  +o  suc  x ) )  =  ( rec ( F ,  A ) `  suc  ( N  +o  x ) ) )
6059adantr 481 . . . . . . . . . . . 12  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  /\  ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) ) )  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  A ) `  suc  ( N  +o  x
) ) )
61 onasuc 7608 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  On  /\  x  e.  om )  ->  ( M  +o  suc  x )  =  suc  ( M  +o  x
) )
6261fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( M  e.  On  /\  x  e.  om )  ->  ( rec ( F ,  B ) `  ( M  +o  suc  x
) )  =  ( rec ( F ,  B ) `  suc  ( M  +o  x
) ) )
63623adant1 1079 . . . . . . . . . . . . 13  |-  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  ( rec ( F ,  B
) `  ( M  +o  suc  x ) )  =  ( rec ( F ,  B ) `  suc  ( M  +o  x ) ) )
6463adantr 481 . . . . . . . . . . . 12  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  /\  ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) ) )  ->  ( rec ( F ,  B ) `
 ( M  +o  suc  x ) )  =  ( rec ( F ,  B ) `  suc  ( M  +o  x
) ) )
6556, 60, 643eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  /\  ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) ) )  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) )
6665ex 450 . . . . . . . . . 10  |-  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  (
( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  ->  ( rec ( F ,  A ) `  ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) ) )
6766imim2d 57 . . . . . . . . 9  |-  ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  (
( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) )  -> 
( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) ) ) )
6840, 67sylbir 225 . . . . . . . 8  |-  ( ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om )  ->  ( ( ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  ( rec ( F ,  A
) `  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) )  -> 
( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) ) ) )
6968a2i 14 . . . . . . 7  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  ->  ( ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) ) ) )
7041, 69sylbi 207 . . . . . 6  |-  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  ->  ( ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) ) ) )
71 sbcimg 3477 . . . . . . 7  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  <-> 
( [. suc  x  /  x ]. ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  [. suc  x  /  x ]. (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) ) )
72 sbc3an 3494 . . . . . . . . 9  |-  ( [. suc  x  /  x ]. ( N  e.  On  /\  M  e.  On  /\  x  e.  om )  <->  (
[. suc  x  /  x ]. N  e.  On  /\ 
[. suc  x  /  x ]. M  e.  On  /\ 
[. suc  x  /  x ]. x  e.  om ) )
73 sbcg 3503 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. N  e.  On  <->  N  e.  On ) )
74 sbcg 3503 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. M  e.  On  <->  M  e.  On ) )
75 sbcel1v 3495 . . . . . . . . . . 11  |-  ( [. suc  x  /  x ]. x  e.  om  <->  suc  x  e. 
om )
7675a1i 11 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. x  e.  om  <->  suc  x  e.  om )
)
7773, 74, 763anbi123d 1399 . . . . . . . . 9  |-  ( suc  x  e.  om  ->  ( ( [. suc  x  /  x ]. N  e.  On  /\  [. suc  x  /  x ]. M  e.  On  /\  [. suc  x  /  x ]. x  e.  om )  <->  ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om ) ) )
7872, 77syl5bb 272 . . . . . . . 8  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  <->  ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om ) ) )
79 sbcimg 3477 . . . . . . . . 9  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  ( rec ( F ,  A
) `  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) )  <->  ( [. suc  x  /  x ]. ( rec ( F ,  A ) `  N
)  =  ( rec ( F ,  B
) `  M )  ->  [. suc  x  /  x ]. ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) ) ) ) )
80 sbcg 3503 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  <->  ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
) ) )
81 sbceqg 3984 . . . . . . . . . . 11  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  <->  [_ suc  x  /  x ]_ ( rec ( F ,  A ) `  ( N  +o  x
) )  =  [_ suc  x  /  x ]_ ( rec ( F ,  B ) `  ( M  +o  x ) ) ) )
82 csbfv12 6231 . . . . . . . . . . . . 13  |-  [_ suc  x  /  x ]_ ( rec ( F ,  A
) `  ( N  +o  x ) )  =  ( [_ suc  x  /  x ]_ rec ( F ,  A ) `  [_ suc  x  /  x ]_ ( N  +o  x ) )
83 csbconstg 3546 . . . . . . . . . . . . . 14  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ rec ( F ,  A )  =  rec ( F ,  A ) )
84 csbov123 6687 . . . . . . . . . . . . . . 15  |-  [_ suc  x  /  x ]_ ( N  +o  x )  =  ( [_ suc  x  /  x ]_ N [_ suc  x  /  x ]_  +o  [_ suc  x  /  x ]_ x )
85 csbconstg 3546 . . . . . . . . . . . . . . . 16  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_  +o  =  +o  )
86 csbconstg 3546 . . . . . . . . . . . . . . . 16  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ N  =  N
)
87 csbvarg 4003 . . . . . . . . . . . . . . . 16  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ x  =  suc  x )
8885, 86, 87oveq123d 6671 . . . . . . . . . . . . . . 15  |-  ( suc  x  e.  om  ->  (
[_ suc  x  /  x ]_ N [_ suc  x  /  x ]_  +o  [_
suc  x  /  x ]_ x )  =  ( N  +o  suc  x
) )
8984, 88syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ ( N  +o  x
)  =  ( N  +o  suc  x ) )
9083, 89fveq12d 6197 . . . . . . . . . . . . 13  |-  ( suc  x  e.  om  ->  (
[_ suc  x  /  x ]_ rec ( F ,  A ) `  [_
suc  x  /  x ]_ ( N  +o  x
) )  =  ( rec ( F ,  A ) `  ( N  +o  suc  x ) ) )
9182, 90syl5eq 2668 . . . . . . . . . . . 12  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  A ) `  ( N  +o  suc  x ) ) )
92 csbfv12 6231 . . . . . . . . . . . . 13  |-  [_ suc  x  /  x ]_ ( rec ( F ,  B
) `  ( M  +o  x ) )  =  ( [_ suc  x  /  x ]_ rec ( F ,  B ) `  [_ suc  x  /  x ]_ ( M  +o  x ) )
93 csbconstg 3546 . . . . . . . . . . . . . 14  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ rec ( F ,  B )  =  rec ( F ,  B ) )
94 csbov123 6687 . . . . . . . . . . . . . . 15  |-  [_ suc  x  /  x ]_ ( M  +o  x )  =  ( [_ suc  x  /  x ]_ M [_ suc  x  /  x ]_  +o  [_ suc  x  /  x ]_ x )
95 csbconstg 3546 . . . . . . . . . . . . . . . 16  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ M  =  M
)
9685, 95, 87oveq123d 6671 . . . . . . . . . . . . . . 15  |-  ( suc  x  e.  om  ->  (
[_ suc  x  /  x ]_ M [_ suc  x  /  x ]_  +o  [_
suc  x  /  x ]_ x )  =  ( M  +o  suc  x
) )
9794, 96syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ ( M  +o  x
)  =  ( M  +o  suc  x ) )
9893, 97fveq12d 6197 . . . . . . . . . . . . 13  |-  ( suc  x  e.  om  ->  (
[_ suc  x  /  x ]_ rec ( F ,  B ) `  [_
suc  x  /  x ]_ ( M  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x ) ) )
9992, 98syl5eq 2668 . . . . . . . . . . . 12  |-  ( suc  x  e.  om  ->  [_
suc  x  /  x ]_ ( rec ( F ,  B ) `  ( M  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x ) ) )
10091, 99eqeq12d 2637 . . . . . . . . . . 11  |-  ( suc  x  e.  om  ->  (
[_ suc  x  /  x ]_ ( rec ( F ,  A ) `  ( N  +o  x
) )  =  [_ suc  x  /  x ]_ ( rec ( F ,  B ) `  ( M  +o  x ) )  <-> 
( rec ( F ,  A ) `  ( N  +o  suc  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x ) ) ) )
10181, 100bitrd 268 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( rec ( F ,  A ) `  ( N  +o  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  x ) )  <-> 
( rec ( F ,  A ) `  ( N  +o  suc  x
) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x ) ) ) )
10280, 101imbi12d 334 . . . . . . . . 9  |-  ( suc  x  e.  om  ->  ( ( [. suc  x  /  x ]. ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  [. suc  x  /  x ]. ( rec ( F ,  A
) `  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) )  <->  ( ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  ( rec ( F ,  A
) `  ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x ) ) ) ) )
10379, 102bitrd 268 . . . . . . . 8  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  ( rec ( F ,  A
) `  ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) )  <->  ( ( rec ( F ,  A
) `  N )  =  ( rec ( F ,  B ) `  M )  ->  ( rec ( F ,  A
) `  ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x ) ) ) ) )
10478, 103imbi12d 334 . . . . . . 7  |-  ( suc  x  e.  om  ->  ( ( [. suc  x  /  x ]. ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  [. suc  x  /  x ]. (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  <-> 
( ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) ) ) ) )
10571, 104bitrd 268 . . . . . 6  |-  ( suc  x  e.  om  ->  (
[. suc  x  /  x ]. ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  <-> 
( ( N  e.  On  /\  M  e.  On  /\  suc  x  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  suc  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  suc  x
) ) ) ) ) )
10670, 105syl5ibr 236 . . . . 5  |-  ( suc  x  e.  om  ->  ( ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  ->  [. suc  x  /  x ]. ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) ) )
10739, 106sylbi 207 . . . 4  |-  ( x  e.  om  ->  (
( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) )  ->  [. suc  x  /  x ]. ( ( N  e.  On  /\  M  e.  On  /\  x  e. 
om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) ) )
10838, 107findes 7096 . . 3  |-  ( x  e.  om  ->  (
( N  e.  On  /\  M  e.  On  /\  x  e.  om )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  x ) )  =  ( rec ( F ,  B ) `  ( M  +o  x
) ) ) ) )
10910, 108vtoclga 3272 . 2  |-  ( X  e.  om  ->  (
( N  e.  On  /\  M  e.  On  /\  X  e.  om )  ->  ( ( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  X ) )  =  ( rec ( F ,  B ) `  ( M  +o  X
) ) ) ) )
1101, 109mpcom 38 1  |-  ( ( N  e.  On  /\  M  e.  On  /\  X  e.  om )  ->  (
( rec ( F ,  A ) `  N )  =  ( rec ( F ,  B ) `  M
)  ->  ( rec ( F ,  A ) `
 ( N  +o  X ) )  =  ( rec ( F ,  B ) `  ( M  +o  X
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   [.wsbc 3435   [_csb 3533   (/)c0 3915   Oncon0 5723   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065   reccrdg 7505    +o coa 7557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564
This theorem is referenced by:  finxpreclem4  33231
  Copyright terms: Public domain W3C validator