![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2d | Structured version Visualization version Unicode version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
xpeq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | xpeq2 5129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-opab 4713 df-xp 5120 |
This theorem is referenced by: xpriindi 5258 csbres 5399 fconstg 6092 curry2 7272 fparlem4 7280 fvdiagfn 7902 mapsncnv 7904 xpsneng 8045 xpcdaen 9005 axdc4lem 9277 fpwwe2lem13 9464 expval 12862 imasvscafn 16197 comfffval 16358 fuchom 16621 homafval 16679 setcmon 16737 xpccofval 16822 pwsco2mhm 17371 frmdplusg 17391 mulgfval 17542 mulgval 17543 symgplusg 17809 efgval 18130 psrplusg 19381 psrvscafval 19390 psrvsca 19391 opsrle 19475 evlssca 19522 mpfind 19536 coe1fv 19576 coe1tm 19643 pf1ind 19719 pjfval 20050 frlmval 20092 islindf5 20178 mdetunilem4 20421 mdetunilem9 20426 txindislem 21436 txcmplem2 21445 txhaus 21450 txkgen 21455 xkofvcn 21487 xkoinjcn 21490 cnextval 21865 cnextfval 21866 pcorev2 22828 pcophtb 22829 pi1grplem 22849 pi1inv 22852 dvfval 23661 dvnfval 23685 0dgrb 24002 dgrnznn 24003 dgreq0 24021 dgrmulc 24027 plyrem 24060 facth 24061 fta1 24063 aaliou2 24095 taylfval 24113 taylpfval 24119 0ofval 27642 aciunf1 29463 indval2 30076 sxbrsigalem3 30334 sxbrsigalem2 30348 eulerpartlemgu 30439 sseqval 30450 sconnpht 31211 sconnpht2 31220 sconnpi1 31221 cvmlift2lem11 31295 cvmlift2lem12 31296 cvmlift2lem13 31297 cvmlift3lem9 31309 mexval 31399 mexval2 31400 mdvval 31401 mpstval 31432 elima4 31679 bj-xtageq 32976 matunitlindflem1 33405 poimirlem32 33441 ismrer1 33637 lflsc0N 34370 lkrscss 34385 lfl1dim 34408 lfl1dim2N 34409 ldualvs 34424 mzpclval 37288 mzpcl1 37292 mendvsca 37761 dvconstbi 38533 expgrowth 38534 csbresgOLD 39055 |
Copyright terms: Public domain | W3C validator |