Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatcvr1 Structured version   Visualization version   Unicode version

Theorem cvlatcvr1 34628
Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlatcvr1.j  |-  .\/  =  ( join `  K )
cvlatcvr1.c  |-  C  =  (  <o  `  K )
cvlatcvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlatcvr1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( P  .\/  Q
) ) )

Proof of Theorem cvlatcvr1
StepHypRef Expression
1 simp13 1093 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  K  e.  CvLat )
2 cvlatl 34612 . . . 4  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
31, 2syl 17 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  K  e.  AtLat )
4 eqid 2622 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
5 eqid 2622 . . . 4  |-  ( 0.
`  K )  =  ( 0. `  K
)
6 cvlatcvr1.a . . . 4  |-  A  =  ( Atoms `  K )
74, 5, 6atnem0 34605 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  ( P
( meet `  K ) Q )  =  ( 0. `  K ) ) )
83, 7syld3an1 1372 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  ( P
( meet `  K ) Q )  =  ( 0. `  K ) ) )
9 eqid 2622 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
109, 6atbase 34576 . . 3  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
11 cvlatcvr1.j . . . 4  |-  .\/  =  ( join `  K )
12 cvlatcvr1.c . . . 4  |-  C  =  (  <o  `  K )
139, 11, 4, 5, 12, 6cvlcvrp 34627 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  ( Base `  K
)  /\  Q  e.  A )  ->  (
( P ( meet `  K ) Q )  =  ( 0. `  K )  <->  P C
( P  .\/  Q
) ) )
1410, 13syl3an2 1360 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  (
( P ( meet `  K ) Q )  =  ( 0. `  K )  <->  P C
( P  .\/  Q
) ) )
158, 14bitrd 268 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( P  .\/  Q
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   joincjn 16944   meetcmee 16945   0.cp0 17037   CLatccla 17107   OMLcoml 34462    <o ccvr 34549   Atomscatm 34550   AtLatcal 34551   CvLatclc 34552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609
This theorem is referenced by:  cvlatcvr2  34629  atcvr1  34703
  Copyright terms: Public domain W3C validator