| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr2 | Structured version Visualization version Unicode version | ||
| Description: Two equivalent ways of
expressing that |
| Ref | Expression |
|---|---|
| cvlsupr2.a |
|
| cvlsupr2.l |
|
| cvlsupr2.j |
|
| Ref | Expression |
|---|---|
| cvlsupr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1066 |
. . . . 5
| |
| 2 | 1 | necomd 2849 |
. . . 4
|
| 3 | simplr 792 |
. . . . . . . . 9
| |
| 4 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 5 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 6 | 4, 5 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 7 | eqcom 2629 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | syl6bb 276 |
. . . . . . . . . 10
|
| 9 | 8 | adantl 482 |
. . . . . . . . 9
|
| 10 | 3, 9 | mpbid 222 |
. . . . . . . 8
|
| 11 | simpl1 1064 |
. . . . . . . . . . 11
| |
| 12 | cvllat 34613 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . 10
|
| 14 | simpl21 1139 |
. . . . . . . . . . 11
| |
| 15 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 16 | cvlsupr2.a |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | atbase 34576 |
. . . . . . . . . . 11
|
| 18 | 14, 17 | syl 17 |
. . . . . . . . . 10
|
| 19 | cvlsupr2.j |
. . . . . . . . . . 11
| |
| 20 | 15, 19 | latjidm 17074 |
. . . . . . . . . 10
|
| 21 | 13, 18, 20 | syl2anc 693 |
. . . . . . . . 9
|
| 22 | 21 | adantr 481 |
. . . . . . . 8
|
| 23 | 10, 22 | eqtrd 2656 |
. . . . . . 7
|
| 24 | 23 | ex 450 |
. . . . . 6
|
| 25 | simpl22 1140 |
. . . . . . . . 9
| |
| 26 | 15, 16 | atbase 34576 |
. . . . . . . . 9
|
| 27 | 25, 26 | syl 17 |
. . . . . . . 8
|
| 28 | cvlsupr2.l |
. . . . . . . . 9
| |
| 29 | 15, 28, 19 | latleeqj1 17063 |
. . . . . . . 8
|
| 30 | 13, 27, 18, 29 | syl3anc 1326 |
. . . . . . 7
|
| 31 | cvlatl 34612 |
. . . . . . . . 9
| |
| 32 | 11, 31 | syl 17 |
. . . . . . . 8
|
| 33 | 28, 16 | atcmp 34598 |
. . . . . . . 8
|
| 34 | 32, 25, 14, 33 | syl3anc 1326 |
. . . . . . 7
|
| 35 | 30, 34 | bitr3d 270 |
. . . . . 6
|
| 36 | 24, 35 | sylibd 229 |
. . . . 5
|
| 37 | 36 | necon3d 2815 |
. . . 4
|
| 38 | 2, 37 | mpd 15 |
. . 3
|
| 39 | simplr 792 |
. . . . . . . . 9
| |
| 40 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 41 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 43 | 42 | adantl 482 |
. . . . . . . . 9
|
| 44 | 39, 43 | mpbid 222 |
. . . . . . . 8
|
| 45 | 15, 19 | latjidm 17074 |
. . . . . . . . . 10
|
| 46 | 13, 27, 45 | syl2anc 693 |
. . . . . . . . 9
|
| 47 | 46 | adantr 481 |
. . . . . . . 8
|
| 48 | 44, 47 | eqtrd 2656 |
. . . . . . 7
|
| 49 | 48 | ex 450 |
. . . . . 6
|
| 50 | 15, 28, 19 | latleeqj1 17063 |
. . . . . . . 8
|
| 51 | 13, 18, 27, 50 | syl3anc 1326 |
. . . . . . 7
|
| 52 | 28, 16 | atcmp 34598 |
. . . . . . . 8
|
| 53 | 32, 14, 25, 52 | syl3anc 1326 |
. . . . . . 7
|
| 54 | 51, 53 | bitr3d 270 |
. . . . . 6
|
| 55 | 49, 54 | sylibd 229 |
. . . . 5
|
| 56 | 55 | necon3d 2815 |
. . . 4
|
| 57 | 1, 56 | mpd 15 |
. . 3
|
| 58 | simpl23 1141 |
. . . . . . 7
| |
| 59 | 15, 16 | atbase 34576 |
. . . . . . 7
|
| 60 | 58, 59 | syl 17 |
. . . . . 6
|
| 61 | 15, 28, 19 | latlej1 17060 |
. . . . . 6
|
| 62 | 13, 27, 60, 61 | syl3anc 1326 |
. . . . 5
|
| 63 | simpr 477 |
. . . . 5
| |
| 64 | 62, 63 | breqtrrd 4681 |
. . . 4
|
| 65 | 28, 19, 16 | cvlatexch1 34623 |
. . . . 5
|
| 66 | 11, 25, 58, 14, 2, 65 | syl131anc 1339 |
. . . 4
|
| 67 | 64, 66 | mpd 15 |
. . 3
|
| 68 | 38, 57, 67 | 3jca 1242 |
. 2
|
| 69 | simpr3 1069 |
. . 3
| |
| 70 | simpl1 1064 |
. . . . . . 7
| |
| 71 | 70, 12 | syl 17 |
. . . . . 6
|
| 72 | simpl21 1139 |
. . . . . . 7
| |
| 73 | 72, 17 | syl 17 |
. . . . . 6
|
| 74 | simpl22 1140 |
. . . . . . 7
| |
| 75 | 74, 26 | syl 17 |
. . . . . 6
|
| 76 | 15, 19 | latjcom 17059 |
. . . . . 6
|
| 77 | 71, 73, 75, 76 | syl3anc 1326 |
. . . . 5
|
| 78 | 77 | breq2d 4665 |
. . . 4
|
| 79 | simpl23 1141 |
. . . . . 6
| |
| 80 | simpr2 1068 |
. . . . . 6
| |
| 81 | 28, 19, 16 | cvlatexch1 34623 |
. . . . . 6
|
| 82 | 70, 79, 72, 74, 80, 81 | syl131anc 1339 |
. . . . 5
|
| 83 | simpr1 1067 |
. . . . . . 7
| |
| 84 | 83 | necomd 2849 |
. . . . . 6
|
| 85 | 28, 19, 16 | cvlatexchb2 34622 |
. . . . . 6
|
| 86 | 70, 72, 74, 79, 84, 85 | syl131anc 1339 |
. . . . 5
|
| 87 | 82, 86 | sylibd 229 |
. . . 4
|
| 88 | 78, 87 | sylbid 230 |
. . 3
|
| 89 | 69, 88 | mpd 15 |
. 2
|
| 90 | 68, 89 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 |
| This theorem is referenced by: cvlsupr3 34631 cvlsupr4 34632 cvlsupr5 34633 cvlsupr6 34634 4atexlemex2 35357 4atex 35362 4atex3 35367 cdleme02N 35509 cdleme0ex2N 35511 cdleme0moN 35512 cdleme0nex 35577 |
| Copyright terms: Public domain | W3C validator |