Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvr1 Structured version   Visualization version   Unicode version

Theorem cvlcvr1 34626
Description: The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 29214 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvr1.b  |-  B  =  ( Base `  K
)
cvlcvr1.l  |-  .<_  =  ( le `  K )
cvlcvr1.j  |-  .\/  =  ( join `  K )
cvlcvr1.c  |-  C  =  (  <o  `  K )
cvlcvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlcvr1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <->  X C
( X  .\/  P
) ) )

Proof of Theorem cvlcvr1
Dummy variables  z 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp13 1093 . . . . . . 7  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  K  e.  CvLat )
2 cvllat 34613 . . . . . . 7  |-  ( K  e.  CvLat  ->  K  e.  Lat )
31, 2syl 17 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  K  e.  Lat )
4 simp2 1062 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  X  e.  B )
5 cvlcvr1.b . . . . . . . 8  |-  B  =  ( Base `  K
)
6 cvlcvr1.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
75, 6atbase 34576 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
873ad2ant3 1084 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  P  e.  B )
9 cvlcvr1.l . . . . . . 7  |-  .<_  =  ( le `  K )
10 eqid 2622 . . . . . . 7  |-  ( lt
`  K )  =  ( lt `  K
)
11 cvlcvr1.j . . . . . . 7  |-  .\/  =  ( join `  K )
125, 9, 10, 11latnle 17085 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( -.  P  .<_  X  <-> 
X ( lt `  K ) ( X 
.\/  P ) ) )
133, 4, 8, 12syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <->  X ( lt `  K ) ( X  .\/  P ) ) )
1413biimpd 219 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  ->  X ( lt `  K ) ( X 
.\/  P ) ) )
15 simpl13 1138 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  CvLat )
1615, 2syl 17 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  Lat )
17 simprll 802 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  z  e.  B
)
18 simpl2 1065 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  X  e.  B
)
19 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  P  e.  A
)
2019, 7syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  P  e.  B
)
215, 11latjcl 17051 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( X  .\/  P
)  e.  B )
2216, 18, 20, 21syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X  .\/  P )  e.  B )
23 simprrr 805 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  z  .<_  ( X 
.\/  P ) )
24 simprrl 804 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  X ( lt
`  K ) z )
25 simpl11 1136 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  OML )
26 simpl12 1137 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  CLat )
27 cvlatl 34612 . . . . . . . . . . . 12  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
2815, 27syl 17 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  AtLat )
295, 9, 10, 6atlrelat1 34608 . . . . . . . . . . 11  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  z  e.  B )  ->  ( X ( lt `  K ) z  ->  E. q  e.  A  ( -.  q  .<_  X  /\  q  .<_  z ) ) )
3025, 26, 28, 18, 17, 29syl311anc 1340 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X ( lt `  K ) z  ->  E. q  e.  A  ( -.  q  .<_  X  /\  q  .<_  z ) ) )
3124, 30mpd 15 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  E. q  e.  A  ( -.  q  .<_  X  /\  q  .<_  z ) )
3216adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  K  e.  Lat )
335, 6atbase 34576 . . . . . . . . . . . . . 14  |-  ( q  e.  A  ->  q  e.  B )
3433ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  e.  B )
3517adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  z  e.  B )
3622adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  P )  e.  B )
37 simprrr 805 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  .<_  z )
3823adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  z  .<_  ( X  .\/  P
) )
395, 9, 32, 34, 35, 36, 37, 38lattrd 17058 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  .<_  ( X  .\/  P
) )
4015adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  K  e.  CvLat )
41 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  e.  A )
42 simpll3 1102 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  P  e.  A )
43 simpll2 1101 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  X  e.  B )
44 simprrl 804 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  -.  q  .<_  X )
455, 9, 11, 6cvlexch1 34615 . . . . . . . . . . . . 13  |-  ( ( K  e.  CvLat  /\  (
q  e.  A  /\  P  e.  A  /\  X  e.  B )  /\  -.  q  .<_  X )  ->  ( q  .<_  ( X  .\/  P )  ->  P  .<_  ( X 
.\/  q ) ) )
4640, 41, 42, 43, 44, 45syl131anc 1339 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  (
q  .<_  ( X  .\/  P )  ->  P  .<_  ( X  .\/  q ) ) )
4739, 46mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  P  .<_  ( X  .\/  q
) )
48 simprlr 803 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  -.  P  .<_  X )
4948adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  -.  P  .<_  X )
505, 9, 11, 6cvlexchb1 34617 . . . . . . . . . . . 12  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  q )  <-> 
( X  .\/  P
)  =  ( X 
.\/  q ) ) )
5140, 42, 41, 43, 49, 50syl131anc 1339 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( P  .<_  ( X  .\/  q )  <->  ( X  .\/  P )  =  ( X  .\/  q ) ) )
5247, 51mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  P )  =  ( X  .\/  q
) )
539, 10pltle 16961 . . . . . . . . . . . . . 14  |-  ( ( K  e.  OML  /\  X  e.  B  /\  z  e.  B )  ->  ( X ( lt
`  K ) z  ->  X  .<_  z ) )
5425, 18, 17, 53syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X ( lt `  K ) z  ->  X  .<_  z ) )
5524, 54mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  X  .<_  z )
5655adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  X  .<_  z )
575, 9, 11latjle12 17062 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  q  e.  B  /\  z  e.  B
) )  ->  (
( X  .<_  z  /\  q  .<_  z )  <->  ( X  .\/  q )  .<_  z ) )
5832, 43, 34, 35, 57syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  (
( X  .<_  z  /\  q  .<_  z )  <->  ( X  .\/  q )  .<_  z ) )
5956, 37, 58mpbi2and 956 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  q )  .<_  z )
6052, 59eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  P )  .<_  z )
6131, 60rexlimddv 3035 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X  .\/  P )  .<_  z )
625, 9, 16, 17, 22, 23, 61latasymd 17057 . . . . . . 7  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  z  =  ( X  .\/  P ) )
6362exp44 641 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  (
z  e.  B  -> 
( -.  P  .<_  X  ->  ( ( X ( lt `  K
) z  /\  z  .<_  ( X  .\/  P
) )  ->  z  =  ( X  .\/  P ) ) ) ) )
6463imp 445 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  z  e.  B
)  ->  ( -.  P  .<_  X  ->  (
( X ( lt
`  K ) z  /\  z  .<_  ( X 
.\/  P ) )  ->  z  =  ( X  .\/  P ) ) ) )
6564ralrimdva 2969 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  ->  A. z  e.  B  ( ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) )  ->  z  =  ( X  .\/  P ) ) ) )
6614, 65jcad 555 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  -> 
( X ( lt
`  K ) ( X  .\/  P )  /\  A. z  e.  B  ( ( X ( lt `  K
) z  /\  z  .<_  ( X  .\/  P
) )  ->  z  =  ( X  .\/  P ) ) ) ) )
673, 4, 8, 21syl3anc 1326 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X  .\/  P )  e.  B )
68 cvlcvr1.c . . . . 5  |-  C  =  (  <o  `  K )
695, 9, 10, 68cvrval2 34561 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( X  .\/  P )  e.  B )  -> 
( X C ( X  .\/  P )  <-> 
( X ( lt
`  K ) ( X  .\/  P )  /\  A. z  e.  B  ( ( X ( lt `  K
) z  /\  z  .<_  ( X  .\/  P
) )  ->  z  =  ( X  .\/  P ) ) ) ) )
703, 4, 67, 69syl3anc 1326 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X C ( X  .\/  P )  <->  ( X ( lt `  K ) ( X  .\/  P
)  /\  A. z  e.  B  ( ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) )  ->  z  =  ( X  .\/  P ) ) ) ) )
7166, 70sylibrd 249 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  ->  X C ( X  .\/  P ) ) )
723adantr 481 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  K  e.  Lat )
73 simpl2 1065 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  X  e.  B
)
7467adantr 481 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  ( X  .\/  P )  e.  B )
75 simpr 477 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  X C ( X  .\/  P ) )
765, 10, 68cvrlt 34557 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  e.  B  /\  ( X  .\/  P )  e.  B )  /\  X C ( X  .\/  P ) )  ->  X
( lt `  K
) ( X  .\/  P ) )
7772, 73, 74, 75, 76syl31anc 1329 . . . 4  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  X ( lt
`  K ) ( X  .\/  P ) )
7877ex 450 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X C ( X  .\/  P )  ->  X ( lt `  K ) ( X  .\/  P ) ) )
7978, 13sylibrd 249 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X C ( X  .\/  P )  ->  -.  P  .<_  X ) )
8071, 79impbid 202 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <->  X C
( X  .\/  P
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   ltcplt 16941   joincjn 16944   Latclat 17045   CLatccla 17107   OMLcoml 34462    <o ccvr 34549   Atomscatm 34550   AtLatcal 34551   CvLatclc 34552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609
This theorem is referenced by:  cvlcvrp  34627  cvr1  34696
  Copyright terms: Public domain W3C validator