MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sum Structured version   Visualization version   Unicode version

Definition df-sum 14417
Description: Define the sum of a series with an index set of integers  A.  k is normally a free variable in  B, i.e.  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e. finite subsets of the upper integers) by summo 14448. Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 }  k means  1  +  2  + 
4  =  7, and  sum_ k  e.  NN  ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 14614). (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
df-sum  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
Distinct variable groups:    f, k, m, n, x    A, f, m, n, x    B, f, m, n, x
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sum
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  setvar  k
41, 2, 3csu 14416 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  setvar  m
65cv 1482 . . . . . . . 8  class  m
7 cuz 11687 . . . . . . . 8  class  ZZ>=
86, 7cfv 5888 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 3574 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 caddc 9939 . . . . . . . 8  class  +
11 vn . . . . . . . . 9  setvar  n
12 cz 11377 . . . . . . . . 9  class  ZZ
1311cv 1482 . . . . . . . . . . 11  class  n
1413, 1wcel 1990 . . . . . . . . . 10  wff  n  e.  A
153, 13, 2csb 3533 . . . . . . . . . 10  class  [_ n  /  k ]_ B
16 cc0 9936 . . . . . . . . . 10  class  0
1714, 15, 16cif 4086 . . . . . . . . 9  class  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
1811, 12, 17cmpt 4729 . . . . . . . 8  class  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
1910, 18, 6cseq 12801 . . . . . . 7  class  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
20 vx . . . . . . . 8  setvar  x
2120cv 1482 . . . . . . 7  class  x
22 cli 14215 . . . . . . 7  class  ~~>
2319, 21, 22wbr 4653 . . . . . 6  wff  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x
249, 23wa 384 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
2524, 5, 12wrex 2913 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
26 c1 9937 . . . . . . . . 9  class  1
27 cfz 12326 . . . . . . . . 9  class  ...
2826, 6, 27co 6650 . . . . . . . 8  class  ( 1 ... m )
29 vf . . . . . . . . 9  setvar  f
3029cv 1482 . . . . . . . 8  class  f
3128, 1, 30wf1o 5887 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
32 cn 11020 . . . . . . . . . . 11  class  NN
3313, 30cfv 5888 . . . . . . . . . . . 12  class  ( f `
 n )
343, 33, 2csb 3533 . . . . . . . . . . 11  class  [_ (
f `  n )  /  k ]_ B
3511, 32, 34cmpt 4729 . . . . . . . . . 10  class  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)
3610, 35, 26cseq 12801 . . . . . . . . 9  class  seq 1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )
376, 36cfv 5888 . . . . . . . 8  class  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )
3821, 37wceq 1483 . . . . . . 7  wff  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
)
3931, 38wa 384 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
) )
4039, 29wex 1704 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
4140, 5, 32wrex 2913 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )
4225, 41wo 383 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
4342, 20cio 5849 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
444, 43wceq 1483 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  sumex  14418  sumeq1  14419  nfsum1  14420  nfsum  14421  sumeq2w  14422  sumeq2ii  14423  cbvsum  14425  zsum  14449  fsum  14451
  Copyright terms: Public domain W3C validator