MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsum Structured version   Visualization version   Unicode version

Theorem nfsum 14421
Description: Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1  |-  F/_ x A
nfsum.2  |-  F/_ x B
Assertion
Ref Expression
nfsum  |-  F/_ x sum_ k  e.  A  B

Proof of Theorem nfsum
Dummy variables  f  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 14417 . 2  |-  sum_ k  e.  A  B  =  ( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 nfcv 2764 . . . . 5  |-  F/_ x ZZ
3 nfsum.1 . . . . . . 7  |-  F/_ x A
4 nfcv 2764 . . . . . . 7  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 3596 . . . . . 6  |-  F/ x  A  C_  ( ZZ>= `  m
)
6 nfcv 2764 . . . . . . . 8  |-  F/_ x m
7 nfcv 2764 . . . . . . . 8  |-  F/_ x  +
83nfcri 2758 . . . . . . . . . 10  |-  F/ x  n  e.  A
9 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x n
10 nfsum.2 . . . . . . . . . . 11  |-  F/_ x B
119, 10nfcsb 3551 . . . . . . . . . 10  |-  F/_ x [_ n  /  k ]_ B
12 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
0
138, 11, 12nfif 4115 . . . . . . . . 9  |-  F/_ x if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
142, 13nfmpt 4746 . . . . . . . 8  |-  F/_ x
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
156, 7, 14nfseq 12811 . . . . . . 7  |-  F/_ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
16 nfcv 2764 . . . . . . 7  |-  F/_ x  ~~>
17 nfcv 2764 . . . . . . 7  |-  F/_ x
z
1815, 16, 17nfbr 4699 . . . . . 6  |-  F/ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z
195, 18nfan 1828 . . . . 5  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
202, 19nfrex 3007 . . . 4  |-  F/ x E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
21 nfcv 2764 . . . . 5  |-  F/_ x NN
22 nfcv 2764 . . . . . . . 8  |-  F/_ x
f
23 nfcv 2764 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
2422, 23, 3nff1o 6135 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
25 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
1
26 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x
( f `  n
)
2726, 10nfcsb 3551 . . . . . . . . . . 11  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
2821, 27nfmpt 4746 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
2925, 7, 28nfseq 12811 . . . . . . . . 9  |-  F/_ x  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )
3029, 6nffv 6198 . . . . . . . 8  |-  F/_ x
(  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )
3130nfeq2 2780 . . . . . . 7  |-  F/ x  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )
3224, 31nfan 1828 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
3332nfex 2154 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
3421, 33nfrex 3007 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
3520, 34nfor 1834 . . 3  |-  F/ x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )
3635nfiota 5855 . 2  |-  F/_ x
( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
371, 36nfcxfr 2762 1  |-  F/_ x sum_ k  e.  A  B
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   F/_wnfc 2751   E.wrex 2913   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   iotacio 5849   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-sum 14417
This theorem is referenced by:  fsum2dlem  14501  fsumcom2  14505  fsumcom2OLD  14506  fsumrlim  14543  fsumiun  14553  fsumcn  22673  fsum2cn  22674  nfitg1  23540  nfitg  23541  dvmptfsum  23738  fsumdvdscom  24911  binomcxplemdvsum  38554  binomcxplemnotnn0  38555  fsumcnf  39180  fsumiunss  39807  dvmptfprod  40160  sge0iunmptlemre  40632
  Copyright terms: Public domain W3C validator