| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsum1 | Structured version Visualization version Unicode version | ||
| Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| nfsum1.1 |
|
| Ref | Expression |
|---|---|
| nfsum1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sum 14417 |
. 2
| |
| 2 | nfcv 2764 |
. . . . 5
| |
| 3 | nfsum1.1 |
. . . . . . 7
| |
| 4 | nfcv 2764 |
. . . . . . 7
| |
| 5 | 3, 4 | nfss 3596 |
. . . . . 6
|
| 6 | nfcv 2764 |
. . . . . . . 8
| |
| 7 | nfcv 2764 |
. . . . . . . 8
| |
| 8 | 3 | nfcri 2758 |
. . . . . . . . . 10
|
| 9 | nfcsb1v 3549 |
. . . . . . . . . 10
| |
| 10 | nfcv 2764 |
. . . . . . . . . 10
| |
| 11 | 8, 9, 10 | nfif 4115 |
. . . . . . . . 9
|
| 12 | 2, 11 | nfmpt 4746 |
. . . . . . . 8
|
| 13 | 6, 7, 12 | nfseq 12811 |
. . . . . . 7
|
| 14 | nfcv 2764 |
. . . . . . 7
| |
| 15 | nfcv 2764 |
. . . . . . 7
| |
| 16 | 13, 14, 15 | nfbr 4699 |
. . . . . 6
|
| 17 | 5, 16 | nfan 1828 |
. . . . 5
|
| 18 | 2, 17 | nfrex 3007 |
. . . 4
|
| 19 | nfcv 2764 |
. . . . 5
| |
| 20 | nfcv 2764 |
. . . . . . . 8
| |
| 21 | nfcv 2764 |
. . . . . . . 8
| |
| 22 | 20, 21, 3 | nff1o 6135 |
. . . . . . 7
|
| 23 | nfcv 2764 |
. . . . . . . . . 10
| |
| 24 | nfcsb1v 3549 |
. . . . . . . . . . 11
| |
| 25 | 19, 24 | nfmpt 4746 |
. . . . . . . . . 10
|
| 26 | 23, 7, 25 | nfseq 12811 |
. . . . . . . . 9
|
| 27 | 26, 6 | nffv 6198 |
. . . . . . . 8
|
| 28 | 27 | nfeq2 2780 |
. . . . . . 7
|
| 29 | 22, 28 | nfan 1828 |
. . . . . 6
|
| 30 | 29 | nfex 2154 |
. . . . 5
|
| 31 | 19, 30 | nfrex 3007 |
. . . 4
|
| 32 | 18, 31 | nfor 1834 |
. . 3
|
| 33 | 32 | nfiota 5855 |
. 2
|
| 34 | 1, 33 | nfcxfr 2762 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-sum 14417 |
| This theorem is referenced by: dvmptfprod 40160 dvnprodlem1 40161 fourierdlem112 40435 etransclem32 40483 sge0reuz 40664 |
| Copyright terms: Public domain | W3C validator |