MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summo Structured version   Visualization version   Unicode version

Theorem summo 14448
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
summo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
summo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
summo.3  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
Assertion
Ref Expression
summo  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
Distinct variable groups:    f, k, m, n, x, A    f, F, k, m, n, x   
k, G, m, n, x    ph, k, m, n    B, f, m, n, x    ph, x, f
Allowed substitution hints:    B( k)    G( f)

Proof of Theorem summo
Dummy variables  g 
j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  n  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  n )
)
21sseq2d 3633 . . . . . . . . 9  |-  ( m  =  n  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  n ) ) )
3 seqeq1 12804 . . . . . . . . . 10  |-  ( m  =  n  ->  seq m (  +  ,  F )  =  seq n (  +  ,  F ) )
43breq1d 4663 . . . . . . . . 9  |-  ( m  =  n  ->  (  seq m (  +  ,  F )  ~~>  y  <->  seq n
(  +  ,  F
)  ~~>  y ) )
52, 4anbi12d 747 . . . . . . . 8  |-  ( m  =  n  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  y )  <-> 
( A  C_  ( ZZ>=
`  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )
65cbvrexv 3172 . . . . . . 7  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  <->  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )
7 reeanv 3107 . . . . . . . . 9  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )
8 simprlr 803 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq m (  +  ,  F )  ~~>  x )
9 summo.1 . . . . . . . . . . . . . 14  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
10 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  ph )
11 summo.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1210, 11sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  /\  k  e.  A )  ->  B  e.  CC )
13 simplrl 800 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  m  e.  ZZ )
14 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  n  e.  ZZ )
15 simprll 802 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  A  C_  ( ZZ>= `  m )
)
16 simprrl 804 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  A  C_  ( ZZ>= `  n )
)
179, 12, 13, 14, 15, 16sumrb 14444 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq n
(  +  ,  F
)  ~~>  x ) )
188, 17mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq n (  +  ,  F )  ~~>  x )
19 simprrr 805 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq n (  +  ,  F )  ~~>  y )
20 climuni 14283 . . . . . . . . . . . 12  |-  ( (  seq n (  +  ,  F )  ~~>  x  /\  seq n (  +  ,  F )  ~~>  y )  ->  x  =  y )
2118, 19, 20syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  x  =  y )
2221exp31 630 . . . . . . . . . 10  |-  ( ph  ->  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  (
( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) ) )
2322rexlimdvv 3037 . . . . . . . . 9  |-  ( ph  ->  ( E. m  e.  ZZ  E. n  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) )
247, 23syl5bir 233 . . . . . . . 8  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) )
2524expdimp 453 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n
)  /\  seq n
(  +  ,  F
)  ~~>  y )  ->  x  =  y )
)
266, 25syl5bi 232 . . . . . 6  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  ->  x  =  y )
)
27 summo.3 . . . . . . 7  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
289, 11, 27summolem2 14447 . . . . . 6  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
2926, 28jaod 395 . . . . 5  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
309, 11, 27summolem2 14447 . . . . . . . 8  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  -> 
y  =  x ) )
31 equcom 1945 . . . . . . . 8  |-  ( y  =  x  <->  x  =  y )
3230, 31syl6ib 241 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
3332impancom 456 . . . . . 6  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  ->  x  =  y ) )
34 oveq2 6658 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
35 f1oeq2 6128 . . . . . . . . . . . 12  |-  ( ( 1 ... m )  =  ( 1 ... n )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... n
)
-1-1-onto-> A ) )
3634, 35syl 17 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... n
)
-1-1-onto-> A ) )
37 fveq2 6191 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (  seq 1 (  +  ,  G ) `  m
)  =  (  seq 1 (  +  ,  G ) `  n
) )
3837eqeq2d 2632 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
y  =  (  seq 1 (  +  ,  G ) `  m
)  <->  y  =  (  seq 1 (  +  ,  G ) `  n ) ) )
3936, 38anbi12d 747 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  ( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `
 n ) ) ) )
4039exbidv 1850 . . . . . . . . 9  |-  ( m  =  n  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) ) ) )
41 f1oeq1 6127 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
f : ( 1 ... n ) -1-1-onto-> A  <->  g :
( 1 ... n
)
-1-1-onto-> A ) )
42 fveq1 6190 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
f `  n )  =  ( g `  n ) )
4342csbeq1d 3540 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( g `  n )  /  k ]_ B )
4443mpteq2dv 4745 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) )
4527, 44syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  G  =  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) )
4645seqeq3d 12809 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  seq 1 (  +  ,  G )  =  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) )
4746fveq1d 6193 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (  seq 1 (  +  ,  G ) `  n
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )
4847eqeq2d 2632 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
y  =  (  seq 1 (  +  ,  G ) `  n
)  <->  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
4941, 48anbi12d 747 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) )  <->  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
g `  n )  /  k ]_ B
) ) `  n
) ) ) )
5049cbvexv 2275 . . . . . . . . 9  |-  ( E. f ( f : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) )  <->  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
5140, 50syl6bb 276 . . . . . . . 8  |-  ( m  =  n  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
5251cbvrexv 3172 . . . . . . 7  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. n  e.  NN  E. g ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) ) )
53 reeanv 3107 . . . . . . . . 9  |-  ( E. m  e.  NN  E. n  e.  NN  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. n  e.  NN  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
54 eeanv 2182 . . . . . . . . . . 11  |-  ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
55 an4 865 . . . . . . . . . . . . 13  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  g : ( 1 ... n ) -1-1-onto-> A )  /\  ( x  =  (  seq 1
(  +  ,  G
) `  m )  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) ) ) )
56 simpll 790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  ->  ph )
5756, 11sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
58 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
f `  n )  =  ( f `  j ) )
5958csbeq1d 3540 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  j )  /  k ]_ B )
6059cbvmptv 4750 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
f `  j )  /  k ]_ B
)
6127, 60eqtri 2644 . . . . . . . . . . . . . . . 16  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
62 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  (
g `  n )  =  ( g `  j ) )
6362csbeq1d 3540 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  [_ (
g `  n )  /  k ]_ B  =  [_ ( g `  j )  /  k ]_ B )
6463cbvmptv 4750 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  [_ (
g `  n )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
)
65 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
( m  e.  NN  /\  n  e.  NN ) )
66 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
67 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
g : ( 1 ... n ) -1-1-onto-> A )
689, 57, 61, 64, 65, 66, 67summolem3 14445 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
(  seq 1 (  +  ,  G ) `  m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) )
69 eqeq12 2635 . . . . . . . . . . . . . . 15  |-  ( ( x  =  (  seq 1 (  +  ,  G ) `  m
)  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) )  -> 
( x  =  y  <-> 
(  seq 1 (  +  ,  G ) `  m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
7068, 69syl5ibrcom 237 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
( ( x  =  (  seq 1 (  +  ,  G ) `
 m )  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )  ->  x  =  y )
)
7170expimpd 629 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A )  /\  (
x  =  (  seq 1 (  +  ,  G ) `  m
)  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7255, 71syl5bi 232 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `
 m ) )  /\  ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7372exlimdvv 1862 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `
 m ) )  /\  ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7454, 73syl5bir 233 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7574rexlimdvva 3038 . . . . . . . . 9  |-  ( ph  ->  ( E. m  e.  NN  E. n  e.  NN  ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7653, 75syl5bir 233 . . . . . . . 8  |-  ( ph  ->  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. n  e.  NN  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7776expdimp 453 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. n  e.  NN  E. g ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )  ->  x  =  y )
)
7852, 77syl5bi 232 . . . . . 6  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
7933, 78jaod 395 . . . . 5  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
8029, 79jaodan 826 . . . 4  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
8180expimpd 629 . . 3  |-  ( ph  ->  ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
8281alrimivv 1856 . 2  |-  ( ph  ->  A. x A. y
( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
83 breq2 4657 . . . . . 6  |-  ( x  =  y  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq m
(  +  ,  F
)  ~~>  y ) )
8483anbi2d 740 . . . . 5  |-  ( x  =  y  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  y ) ) )
8584rexbidv 3052 . . . 4  |-  ( x  =  y  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) ) )
86 eqeq1 2626 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  (  seq 1 (  +  ,  G ) `  m
)  <->  y  =  (  seq 1 (  +  ,  G ) `  m ) ) )
8786anbi2d 740 . . . . . 6  |-  ( x  =  y  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `
 m ) ) ) )
8887exbidv 1850 . . . . 5  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
8988rexbidv 3052 . . . 4  |-  ( x  =  y  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )
9085, 89orbi12d 746 . . 3  |-  ( x  =  y  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) ) ) ) )
9190mo4 2517 . 2  |-  ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  <->  A. x A. y ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
9282, 91sylibr 224 1  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E*wmo 2471   E.wrex 2913   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  fsum  14451
  Copyright terms: Public domain W3C validator