MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsum Structured version   Visualization version   Unicode version

Theorem zsum 14449
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
zsum.1  |-  Z  =  ( ZZ>= `  M )
zsum.2  |-  ( ph  ->  M  e.  ZZ )
zsum.3  |-  ( ph  ->  A  C_  Z )
zsum.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
zsum.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
zsum  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
Distinct variable groups:    A, k    k, F    ph, k    k, Z   
k, M
Allowed substitution hint:    B( k)

Proof of Theorem zsum
Dummy variables  f 
g  i  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . . . . . . . . 12  |-  ( n  =  i  ->  (
n  e.  A  <->  i  e.  A ) )
2 csbeq1 3536 . . . . . . . . . . . 12  |-  ( n  =  i  ->  [_ n  /  k ]_ B  =  [_ i  /  k ]_ B )
31, 2ifbieq1d 4109 . . . . . . . . . . 11  |-  ( n  =  i  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  if ( i  e.  A ,  [_ i  /  k ]_ B ,  0 ) )
43cbvmptv 4750 . . . . . . . . . 10  |-  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( i  e.  ZZ  |->  if ( i  e.  A ,  [_ i  /  k ]_ B ,  0 ) )
5 simpll 790 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  ph )
6 zsum.5 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
76ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
8 nfcsb1v 3549 . . . . . . . . . . . . . 14  |-  F/_ k [_ i  /  k ]_ B
98nfel1 2779 . . . . . . . . . . . . 13  |-  F/ k
[_ i  /  k ]_ B  e.  CC
10 csbeq1a 3542 . . . . . . . . . . . . . 14  |-  ( k  =  i  ->  B  =  [_ i  /  k ]_ B )
1110eleq1d 2686 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  ( B  e.  CC  <->  [_ i  / 
k ]_ B  e.  CC ) )
129, 11rspc 3303 . . . . . . . . . . . 12  |-  ( i  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ i  /  k ]_ B  e.  CC )
)
137, 12syl5 34 . . . . . . . . . . 11  |-  ( i  e.  A  ->  ( ph  ->  [_ i  /  k ]_ B  e.  CC ) )
145, 13mpan9 486 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  A )  ->  [_ i  /  k ]_ B  e.  CC )
15 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  m  e.  ZZ )
16 zsum.2 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
1716ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  M  e.  ZZ )
18 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  A  C_  ( ZZ>=
`  m ) )
19 zsum.3 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  Z )
20 zsum.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
2119, 20syl6sseq 3651 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2221ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  A  C_  ( ZZ>=
`  M ) )
234, 14, 15, 17, 18, 22sumrb 14444 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  <->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
2423biimpd 219 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
2524expimpd 629 . . . . . . 7  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
2625rexlimdva 3031 . . . . . 6  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
2719ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  A  C_  Z )
28 uzssz 11707 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= `  M )  C_  ZZ
2920, 28eqsstri 3635 . . . . . . . . . . . . . . 15  |-  Z  C_  ZZ
30 zssre 11384 . . . . . . . . . . . . . . 15  |-  ZZ  C_  RR
3129, 30sstri 3612 . . . . . . . . . . . . . 14  |-  Z  C_  RR
32 ltso 10118 . . . . . . . . . . . . . 14  |-  <  Or  RR
33 soss 5053 . . . . . . . . . . . . . 14  |-  ( Z 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  Z ) )
3431, 32, 33mp2 9 . . . . . . . . . . . . 13  |-  <  Or  Z
35 soss 5053 . . . . . . . . . . . . 13  |-  ( A 
C_  Z  ->  (  <  Or  Z  ->  <  Or  A ) )
3627, 34, 35mpisyl 21 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  <  Or  A )
37 fzfi 12771 . . . . . . . . . . . . 13  |-  ( 1 ... m )  e. 
Fin
38 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( 1 ... m )  e. 
_V
3938f1oen 7976 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  ( 1 ... m )  ~~  A )
4039adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  ~~  A )
4140ensymd 8007 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  A  ~~  ( 1 ... m
) )
42 enfii 8177 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... m
)  e.  Fin  /\  A  ~~  ( 1 ... m ) )  ->  A  e.  Fin )
4337, 41, 42sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  A  e.  Fin )
44 fz1iso 13246 . . . . . . . . . . . 12  |-  ( (  <  Or  A  /\  A  e.  Fin )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) )
4536, 43, 44syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  E. g 
g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
46 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) ) )  ->  ph )
4746, 13mpan9 486 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  /\  i  e.  A )  ->  [_ i  /  k ]_ B  e.  CC )
48 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  (
f `  n )  =  ( f `  j ) )
4948csbeq1d 3540 . . . . . . . . . . . . . . . 16  |-  ( n  =  j  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  j )  /  k ]_ B )
50 csbco 3543 . . . . . . . . . . . . . . . 16  |-  [_ (
f `  j )  /  i ]_ [_ i  /  k ]_ B  =  [_ ( f `  j )  /  k ]_ B
5149, 50syl6eqr 2674 . . . . . . . . . . . . . . 15  |-  ( n  =  j  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  j )  /  i ]_ [_ i  /  k ]_ B )
5251cbvmptv 4750 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
f `  j )  /  i ]_ [_ i  /  k ]_ B
)
53 eqid 2622 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  |->  [_ (
g `  j )  /  i ]_ [_ i  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
g `  j )  /  i ]_ [_ i  /  k ]_ B
)
54 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) ) )  ->  m  e.  NN )
5516ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) ) )  ->  M  e.  ZZ )
5621ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) ) )  ->  A  C_  ( ZZ>=
`  M ) )
57 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) ) )  ->  f :
( 1 ... m
)
-1-1-onto-> A )
58 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) ) )  ->  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) )
594, 47, 52, 53, 54, 55, 56, 57, 58summolem2a 14446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )
6059expr 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
6160exlimdv 1861 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( E. g  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
)  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
6245, 61mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )
63 breq2 4657 . . . . . . . . . 10  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  ->  (  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  <->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
6462, 63syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
6564expimpd 629 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
6665exlimdv 1861 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
6766rexlimdva 3031 . . . . . 6  |-  ( ph  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
6826, 67jaod 395 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
6916adantr 481 . . . . . . . 8  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  ->  M  e.  ZZ )
7021adantr 481 . . . . . . . 8  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  ->  A  C_  ( ZZ>=
`  M ) )
71 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
72 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
7372sseq2d 3633 . . . . . . . . . 10  |-  ( m  =  M  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  M ) ) )
74 seqeq1 12804 . . . . . . . . . . 11  |-  ( m  =  M  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  =  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ) )
7574breq1d 4663 . . . . . . . . . 10  |-  ( m  =  M  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  <->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
7673, 75anbi12d 747 . . . . . . . . 9  |-  ( m  =  M  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  M )  /\  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) ) )
7776rspcev 3309 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( A  C_  ( ZZ>= `  M )  /\  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
7869, 70, 71, 77syl12anc 1324 . . . . . . 7  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
7978orcd 407 . . . . . 6  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
8079ex 450 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  -> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )
8168, 80impbid 202 . . . 4  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
82 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  j  e.  ( ZZ>= `  M )
)
8328, 82sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  j  e.  ZZ )
8482, 20syl6eleqr 2712 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  j  e.  Z )
85 zsum.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
8685ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
8786adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  A. k  e.  Z  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
88 nfcsb1v 3549 . . . . . . . . . . . 12  |-  F/_ k [_ j  /  k ]_ if ( k  e.  A ,  B , 
0 )
8988nfeq2 2780 . . . . . . . . . . 11  |-  F/ k ( F `  j
)  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 )
90 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
91 csbeq1a 3542 . . . . . . . . . . . 12  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  0 )  =  [_ j  / 
k ]_ if ( k  e.  A ,  B ,  0 ) )
9290, 91eqeq12d 2637 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( F `  k
)  =  if ( k  e.  A ,  B ,  0 )  <-> 
( F `  j
)  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 ) ) )
9389, 92rspc 3303 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  =  if ( k  e.  A ,  B ,  0 )  -> 
( F `  j
)  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 ) ) )
9484, 87, 93sylc 65 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  ( F `  j )  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 ) )
95 fvex 6201 . . . . . . . . 9  |-  ( F `
 j )  e. 
_V
9694, 95syl6eqelr 2710 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  [_ j  / 
k ]_ if ( k  e.  A ,  B ,  0 )  e. 
_V )
97 nfcv 2764 . . . . . . . . . . 11  |-  F/_ n if ( k  e.  A ,  B ,  0 )
98 nfv 1843 . . . . . . . . . . . 12  |-  F/ k  n  e.  A
99 nfcsb1v 3549 . . . . . . . . . . . 12  |-  F/_ k [_ n  /  k ]_ B
100 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k
0
10198, 99, 100nfif 4115 . . . . . . . . . . 11  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
102 eleq1 2689 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
103 csbeq1a 3542 . . . . . . . . . . . 12  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
104102, 103ifbieq1d 4109 . . . . . . . . . . 11  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
10597, 101, 104cbvmpt 4749 . . . . . . . . . 10  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
106105eqcomi 2631 . . . . . . . . 9  |-  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
107106fvmpts 6285 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 )  e.  _V )  -> 
( ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `
 j )  = 
[_ j  /  k ]_ if ( k  e.  A ,  B , 
0 ) )
10883, 96, 107syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `  j )  =  [_ j  / 
k ]_ if ( k  e.  A ,  B ,  0 ) )
109108, 94eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `  j )  =  ( F `  j ) )
11016, 109seqfeq 12826 . . . . 5  |-  ( ph  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  =  seq M
(  +  ,  F
) )
111110breq1d 4663 . . . 4  |-  ( ph  ->  (  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  <->  seq M (  +  ,  F )  ~~>  x ) )
11281, 111bitrd 268 . . 3  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <->  seq M (  +  ,  F )  ~~>  x ) )
113112iotabidv 5872 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  ( iota
x  seq M (  +  ,  F )  ~~>  x ) )
114 df-sum 14417 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
115 df-fv 5896 . 2  |-  (  ~~>  `  seq M (  +  ,  F ) )  =  ( iota x  seq M (  +  ,  F )  ~~>  x )
116113, 114, 1153eqtr4g 2681 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   iotacio 5849   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  isum  14450  sum0  14452  sumz  14453  sumss  14455  fsumsers  14459
  Copyright terms: Public domain W3C validator