| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfid3 | Structured version Visualization version Unicode version | ||
| Description: A stronger version of df-id 5024 that doesn't require |
| Ref | Expression |
|---|---|
| dfid3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 5024 |
. 2
| |
| 2 | ancom 466 |
. . . . . . . . . . 11
| |
| 3 | equcom 1945 |
. . . . . . . . . . . 12
| |
| 4 | 3 | anbi1i 731 |
. . . . . . . . . . 11
|
| 5 | 2, 4 | bitri 264 |
. . . . . . . . . 10
|
| 6 | 5 | exbii 1774 |
. . . . . . . . 9
|
| 7 | opeq2 4403 |
. . . . . . . . . . 11
| |
| 8 | 7 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 9 | 8 | equsexvw 1932 |
. . . . . . . . 9
|
| 10 | equid 1939 |
. . . . . . . . . 10
| |
| 11 | 10 | biantru 526 |
. . . . . . . . 9
|
| 12 | 6, 9, 11 | 3bitri 286 |
. . . . . . . 8
|
| 13 | 12 | exbii 1774 |
. . . . . . 7
|
| 14 | nfe1 2027 |
. . . . . . . 8
| |
| 15 | 14 | 19.9 2072 |
. . . . . . 7
|
| 16 | 13, 15 | bitr4i 267 |
. . . . . 6
|
| 17 | opeq2 4403 |
. . . . . . . . . . 11
| |
| 18 | 17 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 19 | equequ2 1953 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | anbi12d 747 |
. . . . . . . . 9
|
| 21 | 20 | sps 2055 |
. . . . . . . 8
|
| 22 | 21 | drex1 2327 |
. . . . . . 7
|
| 23 | 22 | drex2 2328 |
. . . . . 6
|
| 24 | 16, 23 | syl5bb 272 |
. . . . 5
|
| 25 | nfnae 2318 |
. . . . . 6
| |
| 26 | nfnae 2318 |
. . . . . . 7
| |
| 27 | nfcvd 2765 |
. . . . . . . . 9
| |
| 28 | nfcvf2 2789 |
. . . . . . . . . 10
| |
| 29 | nfcvd 2765 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | nfopd 4419 |
. . . . . . . . 9
|
| 31 | 27, 30 | nfeqd 2772 |
. . . . . . . 8
|
| 32 | 28, 29 | nfeqd 2772 |
. . . . . . . 8
|
| 33 | 31, 32 | nfand 1826 |
. . . . . . 7
|
| 34 | opeq2 4403 |
. . . . . . . . . 10
| |
| 35 | 34 | eqeq2d 2632 |
. . . . . . . . 9
|
| 36 | equequ2 1953 |
. . . . . . . . 9
| |
| 37 | 35, 36 | anbi12d 747 |
. . . . . . . 8
|
| 38 | 37 | a1i 11 |
. . . . . . 7
|
| 39 | 26, 33, 38 | cbvexd 2278 |
. . . . . 6
|
| 40 | 25, 39 | exbid 2091 |
. . . . 5
|
| 41 | 24, 40 | pm2.61i 176 |
. . . 4
|
| 42 | 41 | abbii 2739 |
. . 3
|
| 43 | df-opab 4713 |
. . 3
| |
| 44 | df-opab 4713 |
. . 3
| |
| 45 | 42, 43, 44 | 3eqtr4i 2654 |
. 2
|
| 46 | 1, 45 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-id 5024 |
| This theorem is referenced by: dfid2 5027 reli 5249 opabresid 5455 ider 7779 cnmptid 21464 |
| Copyright terms: Public domain | W3C validator |