MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreiincl Structured version   Visualization version   Unicode version

Theorem mreiincl 16256
Description: A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
mreiincl  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  e.  C )
Distinct variable groups:    y, I    y, X    y, C
Allowed substitution hint:    S( y)

Proof of Theorem mreiincl
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4553 . . 3  |-  ( A. y  e.  I  S  e.  C  ->  |^|_ y  e.  I  S  =  |^| { s  |  E. y  e.  I  s  =  S } )
213ad2ant3 1084 . 2  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  =  |^| { s  |  E. y  e.  I  s  =  S } )
3 simp1 1061 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  C  e.  (Moore `  X )
)
4 uniiunlem 3691 . . . . 5  |-  ( A. y  e.  I  S  e.  C  ->  ( A. y  e.  I  S  e.  C  <->  { s  |  E. y  e.  I  s  =  S }  C_  C
) )
54ibi 256 . . . 4  |-  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  C_  C )
653ad2ant3 1084 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  { s  |  E. y  e.  I  s  =  S }  C_  C )
7 n0 3931 . . . . . 6  |-  ( I  =/=  (/)  <->  E. y  y  e.  I )
8 nfra1 2941 . . . . . . . 8  |-  F/ y A. y  e.  I  S  e.  C
9 nfre1 3005 . . . . . . . . . 10  |-  F/ y E. y  e.  I 
s  =  S
109nfab 2769 . . . . . . . . 9  |-  F/_ y { s  |  E. y  e.  I  s  =  S }
11 nfcv 2764 . . . . . . . . 9  |-  F/_ y (/)
1210, 11nfne 2894 . . . . . . . 8  |-  F/ y { s  |  E. y  e.  I  s  =  S }  =/=  (/)
138, 12nfim 1825 . . . . . . 7  |-  F/ y ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )
14 rsp 2929 . . . . . . . . . 10  |-  ( A. y  e.  I  S  e.  C  ->  ( y  e.  I  ->  S  e.  C ) )
1514com12 32 . . . . . . . . 9  |-  ( y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  S  e.  C ) )
16 elisset 3215 . . . . . . . . . . 11  |-  ( S  e.  C  ->  E. s 
s  =  S )
17 rspe 3003 . . . . . . . . . . . 12  |-  ( ( y  e.  I  /\  E. s  s  =  S )  ->  E. y  e.  I  E. s 
s  =  S )
1817ex 450 . . . . . . . . . . 11  |-  ( y  e.  I  ->  ( E. s  s  =  S  ->  E. y  e.  I  E. s  s  =  S ) )
1916, 18syl5 34 . . . . . . . . . 10  |-  ( y  e.  I  ->  ( S  e.  C  ->  E. y  e.  I  E. s  s  =  S
) )
20 rexcom4 3225 . . . . . . . . . 10  |-  ( E. y  e.  I  E. s  s  =  S  <->  E. s E. y  e.  I  s  =  S )
2119, 20syl6ib 241 . . . . . . . . 9  |-  ( y  e.  I  ->  ( S  e.  C  ->  E. s E. y  e.  I  s  =  S ) )
2215, 21syld 47 . . . . . . . 8  |-  ( y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  E. s E. y  e.  I  s  =  S ) )
23 abn0 3954 . . . . . . . 8  |-  ( { s  |  E. y  e.  I  s  =  S }  =/=  (/)  <->  E. s E. y  e.  I 
s  =  S )
2422, 23syl6ibr 242 . . . . . . 7  |-  ( y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) ) )
2513, 24exlimi 2086 . . . . . 6  |-  ( E. y  y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) ) )
267, 25sylbi 207 . . . . 5  |-  ( I  =/=  (/)  ->  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) ) )
2726imp 445 . . . 4  |-  ( ( I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )
28273adant1 1079 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )
29 mreintcl 16255 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  {
s  |  E. y  e.  I  s  =  S }  C_  C  /\  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )  ->  |^| { s  |  E. y  e.  I  s  =  S }  e.  C
)
303, 6, 28, 29syl3anc 1326 . 2  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^| { s  |  E. y  e.  I  s  =  S }  e.  C )
312, 30eqeltrd 2701 1  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   |^|cint 4475   |^|_ciin 4521   ` cfv 5888  Moorecmre 16242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246
This theorem is referenced by:  mreriincl  16258  mretopd  20896
  Copyright terms: Public domain W3C validator