| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > avril1 | Structured version Visualization version Unicode version | ||
| Description: Poisson d'Avril's
Theorem. This theorem is noted for its
Selbstdokumentieren property, which means, literally,
"self-documenting" and recalls the principle of quidquid
german dictum
sit, altum viditur, often used in set theory. Starting with the
seemingly simple yet profound fact that any object A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. |
| Ref | Expression |
|---|---|
| avril1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1939 |
. . . . . . . 8
| |
| 2 | dfnul2 3917 |
. . . . . . . . . 10
| |
| 3 | 2 | abeq2i 2735 |
. . . . . . . . 9
|
| 4 | 3 | con2bii 347 |
. . . . . . . 8
|
| 5 | 1, 4 | mpbi 220 |
. . . . . . 7
|
| 6 | eleq1 2689 |
. . . . . . 7
| |
| 7 | 5, 6 | mtbii 316 |
. . . . . 6
|
| 8 | 7 | vtocleg 3279 |
. . . . 5
|
| 9 | elex 3212 |
. . . . . 6
| |
| 10 | 9 | con3i 150 |
. . . . 5
|
| 11 | 8, 10 | pm2.61i 176 |
. . . 4
|
| 12 | df-br 4654 |
. . . . 5
| |
| 13 | 0cn 10032 |
. . . . . . . 8
| |
| 14 | 13 | mulid1i 10042 |
. . . . . . 7
|
| 15 | 14 | opeq2i 4406 |
. . . . . 6
|
| 16 | 15 | eleq1i 2692 |
. . . . 5
|
| 17 | 12, 16 | bitri 264 |
. . . 4
|
| 18 | 11, 17 | mtbir 313 |
. . 3
|
| 19 | 18 | intnan 960 |
. 2
|
| 20 | df-i 9945 |
. . . . . . . 8
| |
| 21 | 20 | fveq1i 6192 |
. . . . . . 7
|
| 22 | df-fv 5896 |
. . . . . . 7
| |
| 23 | 21, 22 | eqtri 2644 |
. . . . . 6
|
| 24 | 23 | breq2i 4661 |
. . . . 5
|
| 25 | df-r 9946 |
. . . . . . 7
| |
| 26 | sseq2 3627 |
. . . . . . . . 9
| |
| 27 | 26 | abbidv 2741 |
. . . . . . . 8
|
| 28 | df-pw 4160 |
. . . . . . . 8
| |
| 29 | df-pw 4160 |
. . . . . . . 8
| |
| 30 | 27, 28, 29 | 3eqtr4g 2681 |
. . . . . . 7
|
| 31 | 25, 30 | ax-mp 5 |
. . . . . 6
|
| 32 | 31 | breqi 4659 |
. . . . 5
|
| 33 | 24, 32 | bitri 264 |
. . . 4
|
| 34 | 33 | anbi1i 731 |
. . 3
|
| 35 | 34 | notbii 310 |
. 2
|
| 36 | 19, 35 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-mulcom 10000 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1rid 10006 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-i 9945 df-r 9946 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |