MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3 Structured version   Visualization version   Unicode version

Theorem dfoprab3 7224
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
dfoprab3.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab3  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ps }
Distinct variable groups:    x, y, ph    ps, w    x, z, w, y
Allowed substitution hints:    ph( z, w)    ps( x, y, z)

Proof of Theorem dfoprab3
StepHypRef Expression
1 dfoprab3s 7223 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps ) }
2 fvex 6201 . . . . 5  |-  ( 1st `  w )  e.  _V
3 fvex 6201 . . . . 5  |-  ( 2nd `  w )  e.  _V
4 eqcom 2629 . . . . . . . . . 10  |-  ( x  =  ( 1st `  w
)  <->  ( 1st `  w
)  =  x )
5 eqcom 2629 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  w
)  <->  ( 2nd `  w
)  =  y )
64, 5anbi12i 733 . . . . . . . . 9  |-  ( ( x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) )  <->  ( ( 1st `  w )  =  x  /\  ( 2nd `  w )  =  y ) )
7 eqopi 7202 . . . . . . . . 9  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
( 1st `  w
)  =  x  /\  ( 2nd `  w )  =  y ) )  ->  w  =  <. x ,  y >. )
86, 7sylan2b 492 . . . . . . . 8  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  ->  w  =  <. x ,  y >. )
9 dfoprab3.1 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
108, 9syl 17 . . . . . . 7  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  -> 
( ph  <->  ps ) )
1110bicomd 213 . . . . . 6  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  -> 
( ps  <->  ph ) )
1211ex 450 . . . . 5  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) )  ->  ( ps 
<-> 
ph ) ) )
132, 3, 12sbc2iedv 3506 . . . 4  |-  ( w  e.  ( _V  X.  _V )  ->  ( [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  / 
y ]. ps  <->  ph ) )
1413pm5.32i 669 . . 3  |-  ( ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps )  <->  ( w  e.  ( _V  X.  _V )  /\  ph ) )
1514opabbii 4717 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps ) }  =  { <. w ,  z
>.  |  ( w  e.  ( _V  X.  _V )  /\  ph ) }
161, 15eqtr2i 2645 1  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ps }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   <.cop 4183   {copab 4712    X. cxp 5112   ` cfv 5888   {coprab 6651   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-oprab 6654  df-1st 7168  df-2nd 7169
This theorem is referenced by:  dfoprab4  7225  df1st2  7263  df2nd2  7264
  Copyright terms: Public domain W3C validator