| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfoprab4f | Structured version Visualization version Unicode version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfoprab4f.x |
|
| dfoprab4f.y |
|
| dfoprab4f.1 |
|
| Ref | Expression |
|---|---|
| dfoprab4f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . 5
| |
| 2 | dfoprab4f.x |
. . . . . 6
| |
| 3 | nfs1v 2437 |
. . . . . 6
| |
| 4 | 2, 3 | nfbi 1833 |
. . . . 5
|
| 5 | 1, 4 | nfim 1825 |
. . . 4
|
| 6 | opeq1 4402 |
. . . . . 6
| |
| 7 | 6 | eqeq2d 2632 |
. . . . 5
|
| 8 | sbequ12 2111 |
. . . . . 6
| |
| 9 | 8 | bibi2d 332 |
. . . . 5
|
| 10 | 7, 9 | imbi12d 334 |
. . . 4
|
| 11 | nfv 1843 |
. . . . . 6
| |
| 12 | dfoprab4f.y |
. . . . . . 7
| |
| 13 | nfs1v 2437 |
. . . . . . 7
| |
| 14 | 12, 13 | nfbi 1833 |
. . . . . 6
|
| 15 | 11, 14 | nfim 1825 |
. . . . 5
|
| 16 | opeq2 4403 |
. . . . . . 7
| |
| 17 | 16 | eqeq2d 2632 |
. . . . . 6
|
| 18 | sbequ12 2111 |
. . . . . . 7
| |
| 19 | 18 | bibi2d 332 |
. . . . . 6
|
| 20 | 17, 19 | imbi12d 334 |
. . . . 5
|
| 21 | dfoprab4f.1 |
. . . . 5
| |
| 22 | 15, 20, 21 | chvar 2262 |
. . . 4
|
| 23 | 5, 10, 22 | chvar 2262 |
. . 3
|
| 24 | 23 | dfoprab4 7225 |
. 2
|
| 25 | nfv 1843 |
. . 3
| |
| 26 | nfv 1843 |
. . 3
| |
| 27 | nfv 1843 |
. . . 4
| |
| 28 | 27, 3 | nfan 1828 |
. . 3
|
| 29 | nfv 1843 |
. . . 4
| |
| 30 | 13 | nfsb 2440 |
. . . 4
|
| 31 | 29, 30 | nfan 1828 |
. . 3
|
| 32 | eleq1 2689 |
. . . . 5
| |
| 33 | eleq1 2689 |
. . . . 5
| |
| 34 | 32, 33 | bi2anan9 917 |
. . . 4
|
| 35 | 18, 8 | sylan9bbr 737 |
. . . 4
|
| 36 | 34, 35 | anbi12d 747 |
. . 3
|
| 37 | 25, 26, 28, 31, 36 | cbvoprab12 6729 |
. 2
|
| 38 | 24, 37 | eqtr4i 2647 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-oprab 6654 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |