MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab4f Structured version   Visualization version   Unicode version

Theorem dfoprab4f 7226
Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
dfoprab4f.x  |-  F/ x ph
dfoprab4f.y  |-  F/ y
ph
dfoprab4f.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab4f  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Distinct variable groups:    x, w, y, z    w, A, x, y    w, B, x, y    ps, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z)    A( z)    B( z)

Proof of Theorem dfoprab4f
Dummy variables  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . 5  |-  F/ x  w  =  <. t ,  u >.
2 dfoprab4f.x . . . . . 6  |-  F/ x ph
3 nfs1v 2437 . . . . . 6  |-  F/ x [ t  /  x ] [ u  /  y ] ps
42, 3nfbi 1833 . . . . 5  |-  F/ x
( ph  <->  [ t  /  x ] [ u  /  y ] ps )
51, 4nfim 1825 . . . 4  |-  F/ x
( w  =  <. t ,  u >.  ->  ( ph 
<->  [ t  /  x ] [ u  /  y ] ps ) )
6 opeq1 4402 . . . . . 6  |-  ( x  =  t  ->  <. x ,  u >.  =  <. t ,  u >. )
76eqeq2d 2632 . . . . 5  |-  ( x  =  t  ->  (
w  =  <. x ,  u >.  <->  w  =  <. t ,  u >. )
)
8 sbequ12 2111 . . . . . 6  |-  ( x  =  t  ->  ( [ u  /  y ] ps  <->  [ t  /  x ] [ u  /  y ] ps ) )
98bibi2d 332 . . . . 5  |-  ( x  =  t  ->  (
( ph  <->  [ u  /  y ] ps )  <->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) ) )
107, 9imbi12d 334 . . . 4  |-  ( x  =  t  ->  (
( w  =  <. x ,  u >.  ->  ( ph 
<->  [ u  /  y ] ps ) )  <->  ( w  =  <. t ,  u >.  ->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) ) ) )
11 nfv 1843 . . . . . 6  |-  F/ y  w  =  <. x ,  u >.
12 dfoprab4f.y . . . . . . 7  |-  F/ y
ph
13 nfs1v 2437 . . . . . . 7  |-  F/ y [ u  /  y ] ps
1412, 13nfbi 1833 . . . . . 6  |-  F/ y ( ph  <->  [ u  /  y ] ps )
1511, 14nfim 1825 . . . . 5  |-  F/ y ( w  =  <. x ,  u >.  ->  ( ph 
<->  [ u  /  y ] ps ) )
16 opeq2 4403 . . . . . . 7  |-  ( y  =  u  ->  <. x ,  y >.  =  <. x ,  u >. )
1716eqeq2d 2632 . . . . . 6  |-  ( y  =  u  ->  (
w  =  <. x ,  y >.  <->  w  =  <. x ,  u >. ) )
18 sbequ12 2111 . . . . . . 7  |-  ( y  =  u  ->  ( ps 
<->  [ u  /  y ] ps ) )
1918bibi2d 332 . . . . . 6  |-  ( y  =  u  ->  (
( ph  <->  ps )  <->  ( ph  <->  [ u  /  y ] ps ) ) )
2017, 19imbi12d 334 . . . . 5  |-  ( y  =  u  ->  (
( w  =  <. x ,  y >.  ->  ( ph 
<->  ps ) )  <->  ( w  =  <. x ,  u >.  ->  ( ph  <->  [ u  /  y ] ps ) ) ) )
21 dfoprab4f.1 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
2215, 20, 21chvar 2262 . . . 4  |-  ( w  =  <. x ,  u >.  ->  ( ph  <->  [ u  /  y ] ps ) )
235, 10, 22chvar 2262 . . 3  |-  ( w  =  <. t ,  u >.  ->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) )
2423dfoprab4 7225 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. t ,  u >. ,  z >.  |  ( ( t  e.  A  /\  u  e.  B
)  /\  [ t  /  x ] [ u  /  y ] ps ) }
25 nfv 1843 . . 3  |-  F/ t ( ( x  e.  A  /\  y  e.  B )  /\  ps )
26 nfv 1843 . . 3  |-  F/ u
( ( x  e.  A  /\  y  e.  B )  /\  ps )
27 nfv 1843 . . . 4  |-  F/ x
( t  e.  A  /\  u  e.  B
)
2827, 3nfan 1828 . . 3  |-  F/ x
( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps )
29 nfv 1843 . . . 4  |-  F/ y ( t  e.  A  /\  u  e.  B
)
3013nfsb 2440 . . . 4  |-  F/ y [ t  /  x ] [ u  /  y ] ps
3129, 30nfan 1828 . . 3  |-  F/ y ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps )
32 eleq1 2689 . . . . 5  |-  ( x  =  t  ->  (
x  e.  A  <->  t  e.  A ) )
33 eleq1 2689 . . . . 5  |-  ( y  =  u  ->  (
y  e.  B  <->  u  e.  B ) )
3432, 33bi2anan9 917 . . . 4  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ( x  e.  A  /\  y  e.  B )  <->  ( t  e.  A  /\  u  e.  B ) ) )
3518, 8sylan9bbr 737 . . . 4  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ps  <->  [ t  /  x ] [ u  /  y ] ps ) )
3634, 35anbi12d 747 . . 3  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  ps ) 
<->  ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps ) ) )
3725, 26, 28, 31, 36cbvoprab12 6729 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) }  =  { <. <. t ,  u >. ,  z >.  |  ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps ) }
3824, 37eqtr4i 2647 1  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708   [wsb 1880    e. wcel 1990   <.cop 4183   {copab 4712    X. cxp 5112   {coprab 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-oprab 6654  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator