| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsmo2 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
| Ref | Expression |
|---|---|
| dfsmo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo 7443 |
. 2
| |
| 2 | ralcom 3098 |
. . . . . 6
| |
| 3 | impexp 462 |
. . . . . . . . 9
| |
| 4 | simpr 477 |
. . . . . . . . . . 11
| |
| 5 | ordtr1 5767 |
. . . . . . . . . . . . . . 15
| |
| 6 | 5 | 3impib 1262 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | 3com23 1271 |
. . . . . . . . . . . . 13
|
| 8 | simp3 1063 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | jca 554 |
. . . . . . . . . . . 12
|
| 10 | 9 | 3expia 1267 |
. . . . . . . . . . 11
|
| 11 | 4, 10 | impbid2 216 |
. . . . . . . . . 10
|
| 12 | 11 | imbi1d 331 |
. . . . . . . . 9
|
| 13 | 3, 12 | syl5bbr 274 |
. . . . . . . 8
|
| 14 | 13 | ralbidv2 2984 |
. . . . . . 7
|
| 15 | 14 | ralbidva 2985 |
. . . . . 6
|
| 16 | 2, 15 | syl5bb 272 |
. . . . 5
|
| 17 | 16 | pm5.32i 669 |
. . . 4
|
| 18 | 17 | anbi2i 730 |
. . 3
|
| 19 | 3anass 1042 |
. . 3
| |
| 20 | 3anass 1042 |
. . 3
| |
| 21 | 18, 19, 20 | 3bitr4i 292 |
. 2
|
| 22 | 1, 21 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 df-ord 5726 df-smo 7443 |
| This theorem is referenced by: issmo2 7446 smores2 7451 smofvon2 7453 |
| Copyright terms: Public domain | W3C validator |