| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issmo2 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| issmo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fss 6056 |
. . . . 5
| |
| 2 | 1 | ex 450 |
. . . 4
|
| 3 | fdm 6051 |
. . . . 5
| |
| 4 | 3 | feq2d 6031 |
. . . 4
|
| 5 | 2, 4 | sylibrd 249 |
. . 3
|
| 6 | ordeq 5730 |
. . . . 5
| |
| 7 | 3, 6 | syl 17 |
. . . 4
|
| 8 | 7 | biimprd 238 |
. . 3
|
| 9 | 3 | raleqdv 3144 |
. . . 4
|
| 10 | 9 | biimprd 238 |
. . 3
|
| 11 | 5, 8, 10 | 3anim123d 1406 |
. 2
|
| 12 | dfsmo2 7444 |
. 2
| |
| 13 | 11, 12 | syl6ibr 242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-fn 5891 df-f 5892 df-smo 7443 |
| This theorem is referenced by: alephsmo 8925 cofsmo 9091 cfsmolem 9092 |
| Copyright terms: Public domain | W3C validator |