Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfval Structured version   Visualization version   Unicode version

Theorem dicfval 36464
Description: The partial isomorphism C for a lattice  K. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicfval  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } ) )
Distinct variable groups:    A, r    f, g, q, r, s, K    .<_ , q    A, q    T, g    f, W, g, q, r, s
Allowed substitution hints:    A( f, g, s)    P( f, g, s, r, q)    T( f, s, r, q)    E( f, g, s, r, q)    H( f, g, s, r, q)    I( f, g, s, r, q)    .<_ ( f, g, s, r)    V( f, g, s, r, q)

Proof of Theorem dicfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dicval.i . . 3  |-  I  =  ( ( DIsoC `  K
) `  W )
2 dicval.l . . . . 5  |-  .<_  =  ( le `  K )
3 dicval.a . . . . 5  |-  A  =  ( Atoms `  K )
4 dicval.h . . . . 5  |-  H  =  ( LHyp `  K
)
52, 3, 4dicffval 36463 . . . 4  |-  ( K  e.  V  ->  ( DIsoC `  K )  =  ( w  e.  H  |->  ( q  e.  {
r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) )
65fveq1d 6193 . . 3  |-  ( K  e.  V  ->  (
( DIsoC `  K ) `  W )  =  ( ( w  e.  H  |->  ( q  e.  {
r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) `
 W ) )
71, 6syl5eq 2668 . 2  |-  ( K  e.  V  ->  I  =  ( ( w  e.  H  |->  ( q  e.  { r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) `
 W ) )
8 breq2 4657 . . . . . 6  |-  ( w  =  W  ->  (
r  .<_  w  <->  r  .<_  W ) )
98notbid 308 . . . . 5  |-  ( w  =  W  ->  ( -.  r  .<_  w  <->  -.  r  .<_  W ) )
109rabbidv 3189 . . . 4  |-  ( w  =  W  ->  { r  e.  A  |  -.  r  .<_  w }  =  { r  e.  A  |  -.  r  .<_  W }
)
11 fveq2 6191 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
12 dicval.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
1311, 12syl6eqr 2674 . . . . . . . . 9  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  T )
14 fveq2 6191 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
( oc `  K
) `  w )  =  ( ( oc
`  K ) `  W ) )
15 dicval.p . . . . . . . . . . . 12  |-  P  =  ( ( oc `  K ) `  W
)
1614, 15syl6eqr 2674 . . . . . . . . . . 11  |-  ( w  =  W  ->  (
( oc `  K
) `  w )  =  P )
1716fveq2d 6195 . . . . . . . . . 10  |-  ( w  =  W  ->  (
g `  ( ( oc `  K ) `  w ) )  =  ( g `  P
) )
1817eqeq1d 2624 . . . . . . . . 9  |-  ( w  =  W  ->  (
( g `  (
( oc `  K
) `  w )
)  =  q  <->  ( g `  P )  =  q ) )
1913, 18riotaeqbidv 6614 . . . . . . . 8  |-  ( w  =  W  ->  ( iota_ g  e.  ( (
LTrn `  K ) `  w ) ( g `
 ( ( oc
`  K ) `  w ) )  =  q )  =  (
iota_ g  e.  T  ( g `  P
)  =  q ) )
2019fveq2d 6195 . . . . . . 7  |-  ( w  =  W  ->  (
s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) ) )
2120eqeq2d 2632 . . . . . 6  |-  ( w  =  W  ->  (
f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  <->  f  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  q ) ) ) )
22 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  ( ( TEndo `  K ) `  W ) )
23 dicval.e . . . . . . . 8  |-  E  =  ( ( TEndo `  K
) `  W )
2422, 23syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  E )
2524eleq2d 2687 . . . . . 6  |-  ( w  =  W  ->  (
s  e.  ( (
TEndo `  K ) `  w )  <->  s  e.  E ) )
2621, 25anbi12d 747 . . . . 5  |-  ( w  =  W  ->  (
( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K ) `  w
) ( g `  ( ( oc `  K ) `  w
) )  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
)  <->  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E
) ) )
2726opabbidv 4716 . . . 4  |-  ( w  =  W  ->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) }  =  { <. f ,  s >.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E
) } )
2810, 27mpteq12dv 4733 . . 3  |-  ( w  =  W  ->  (
q  e.  { r  e.  A  |  -.  r  .<_  w }  |->  {
<. f ,  s >.  |  ( f  =  ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  w ) ( g `
 ( ( oc
`  K ) `  w ) )  =  q ) )  /\  s  e.  ( ( TEndo `  K ) `  w ) ) } )  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } ) )
29 eqid 2622 . . 3  |-  ( w  e.  H  |->  ( q  e.  { r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) )  =  ( w  e.  H  |->  ( q  e. 
{ r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) )
30 fvex 6201 . . . . 5  |-  ( Atoms `  K )  e.  _V
313, 30eqeltri 2697 . . . 4  |-  A  e. 
_V
3231mptrabex 6488 . . 3  |-  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } )  e.  _V
3328, 29, 32fvmpt 6282 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( q  e.  {
r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  w )
( g `  (
( oc `  K
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  K
) `  w )
) } ) ) `
 W )  =  ( q  e.  {
r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  q ) )  /\  s  e.  E ) } ) )
347, 33sylan9eq 2676 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653   {copab 4712    |-> cmpt 4729   ` cfv 5888   iota_crio 6610   lecple 15948   occoc 15949   Atomscatm 34550   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-dic 36462
This theorem is referenced by:  dicval  36465  dicfnN  36472
  Copyright terms: Public domain W3C validator