Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval Structured version   Visualization version   Unicode version

Theorem dicval 36465
Description: The partial isomorphism C for a lattice  K. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } )
Distinct variable groups:    f, g,
s, K    T, g    f, W, g, s    f, E, s    P, f    Q, f, g, s    T, f
Allowed substitution hints:    A( f, g, s)    P( g, s)    T( s)    E( g)    H( f, g, s)    I( f, g, s)    .<_ ( f, g, s)    V( f, g, s)

Proof of Theorem dicval
Dummy variables  r 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . . 5  |-  .<_  =  ( le `  K )
2 dicval.a . . . . 5  |-  A  =  ( Atoms `  K )
3 dicval.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 dicval.p . . . . 5  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . . . 5  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicfval 36464 . . . 4  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } ) )
98adantr 481 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  I  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  q ) )  /\  s  e.  E ) } ) )
109fveq1d 6193 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  ( ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  {
<. f ,  s >.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E
) } ) `  Q ) )
11 simpr 477 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
12 breq1 4656 . . . . . 6  |-  ( r  =  Q  ->  (
r  .<_  W  <->  Q  .<_  W ) )
1312notbid 308 . . . . 5  |-  ( r  =  Q  ->  ( -.  r  .<_  W  <->  -.  Q  .<_  W ) )
1413elrab 3363 . . . 4  |-  ( Q  e.  { r  e.  A  |  -.  r  .<_  W }  <->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
1511, 14sylibr 224 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  Q  e.  { r  e.  A  |  -.  r  .<_  W } )
16 eqeq2 2633 . . . . . . . . 9  |-  ( q  =  Q  ->  (
( g `  P
)  =  q  <->  ( g `  P )  =  Q ) )
1716riotabidv 6613 . . . . . . . 8  |-  ( q  =  Q  ->  ( iota_ g  e.  T  ( g `  P )  =  q )  =  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )
1817fveq2d 6195 . . . . . . 7  |-  ( q  =  Q  ->  (
s `  ( iota_ g  e.  T  ( g `  P )  =  q ) )  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) ) )
1918eqeq2d 2632 . . . . . 6  |-  ( q  =  Q  ->  (
f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  <->  f  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
2019anbi1d 741 . . . . 5  |-  ( q  =  Q  ->  (
( f  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  q ) )  /\  s  e.  E )  <->  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) ) )
2120opabbidv 4716 . . . 4  |-  ( q  =  Q  ->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) }  =  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  s  e.  E ) } )
22 eqid 2622 . . . 4  |-  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  q ) )  /\  s  e.  E ) } )  =  ( q  e. 
{ r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  q ) )  /\  s  e.  E ) } )
23 fvex 6201 . . . . . . . . . . 11  |-  ( (
TEndo `  K ) `  W )  e.  _V
246, 23eqeltri 2697 . . . . . . . . . 10  |-  E  e. 
_V
2524uniex 6953 . . . . . . . . 9  |-  U. E  e.  _V
2625rnex 7100 . . . . . . . 8  |-  ran  U. E  e.  _V
2726uniex 6953 . . . . . . 7  |-  U. ran  U. E  e.  _V
2827pwex 4848 . . . . . 6  |-  ~P U. ran  U. E  e.  _V
2928, 24xpex 6962 . . . . 5  |-  ( ~P
U. ran  U. E  X.  E )  e.  _V
30 simpl 473 . . . . . . . . 9  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) ) )
31 fvssunirn 6217 . . . . . . . . . . 11  |-  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  C_  U. ran  s
32 elssuni 4467 . . . . . . . . . . . . 13  |-  ( s  e.  E  ->  s  C_ 
U. E )
3332adantl 482 . . . . . . . . . . . 12  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  s  C_ 
U. E )
34 rnss 5354 . . . . . . . . . . . 12  |-  ( s 
C_  U. E  ->  ran  s  C_  ran  U. E
)
35 uniss 4458 . . . . . . . . . . . 12  |-  ( ran  s  C_  ran  U. E  ->  U. ran  s  C_  U.
ran  U. E )
3633, 34, 353syl 18 . . . . . . . . . . 11  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  U. ran  s  C_  U. ran  U. E )
3731, 36syl5ss 3614 . . . . . . . . . 10  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  (
s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  C_  U. ran  U. E )
3827elpw2 4828 . . . . . . . . . 10  |-  ( ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  e. 
~P U. ran  U. E  <->  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  C_  U.
ran  U. E )
3937, 38sylibr 224 . . . . . . . . 9  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  (
s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  e.  ~P U.
ran  U. E )
4030, 39eqeltrd 2701 . . . . . . . 8  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  f  e.  ~P U. ran  U. E )
41 simpr 477 . . . . . . . 8  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  s  e.  E )
4240, 41jca 554 . . . . . . 7  |-  ( ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E )  ->  (
f  e.  ~P U. ran  U. E  /\  s  e.  E ) )
4342ssopab2i 5003 . . . . . 6  |-  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) }  C_  {
<. f ,  s >.  |  ( f  e. 
~P U. ran  U. E  /\  s  e.  E
) }
44 df-xp 5120 . . . . . 6  |-  ( ~P
U. ran  U. E  X.  E )  =  { <. f ,  s >.  |  ( f  e. 
~P U. ran  U. E  /\  s  e.  E
) }
4543, 44sseqtr4i 3638 . . . . 5  |-  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) }  C_  ( ~P U. ran  U. E  X.  E )
4629, 45ssexi 4803 . . . 4  |-  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) }  e.  _V
4721, 22, 46fvmpt 6282 . . 3  |-  ( Q  e.  { r  e.  A  |  -.  r  .<_  W }  ->  (
( q  e.  {
r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  q ) )  /\  s  e.  E ) } ) `
 Q )  =  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  s  e.  E ) } )
4815, 47syl 17 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( q  e. 
{ r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  q ) )  /\  s  e.  E ) } ) `
 Q )  =  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  s  e.  E ) } )
4910, 48eqtrd 2656 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   ran crn 5115   ` cfv 5888   iota_crio 6610   lecple 15948   occoc 15949   Atomscatm 34550   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-dic 36462
This theorem is referenced by:  dicopelval  36466  dicelvalN  36467  dicval2  36468  dicfnN  36472  dicvalrelN  36474  dicssdvh  36475  dicelval1sta  36476  dihpN  36625
  Copyright terms: Public domain W3C validator