| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicval | Structured version Visualization version Unicode version | ||
| Description: The partial isomorphism C
for a lattice |
| Ref | Expression |
|---|---|
| dicval.l |
|
| dicval.a |
|
| dicval.h |
|
| dicval.p |
|
| dicval.t |
|
| dicval.e |
|
| dicval.i |
|
| Ref | Expression |
|---|---|
| dicval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicval.l |
. . . . 5
| |
| 2 | dicval.a |
. . . . 5
| |
| 3 | dicval.h |
. . . . 5
| |
| 4 | dicval.p |
. . . . 5
| |
| 5 | dicval.t |
. . . . 5
| |
| 6 | dicval.e |
. . . . 5
| |
| 7 | dicval.i |
. . . . 5
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dicfval 36464 |
. . . 4
|
| 9 | 8 | adantr 481 |
. . 3
|
| 10 | 9 | fveq1d 6193 |
. 2
|
| 11 | simpr 477 |
. . . 4
| |
| 12 | breq1 4656 |
. . . . . 6
| |
| 13 | 12 | notbid 308 |
. . . . 5
|
| 14 | 13 | elrab 3363 |
. . . 4
|
| 15 | 11, 14 | sylibr 224 |
. . 3
|
| 16 | eqeq2 2633 |
. . . . . . . . 9
| |
| 17 | 16 | riotabidv 6613 |
. . . . . . . 8
|
| 18 | 17 | fveq2d 6195 |
. . . . . . 7
|
| 19 | 18 | eqeq2d 2632 |
. . . . . 6
|
| 20 | 19 | anbi1d 741 |
. . . . 5
|
| 21 | 20 | opabbidv 4716 |
. . . 4
|
| 22 | eqid 2622 |
. . . 4
| |
| 23 | fvex 6201 |
. . . . . . . . . . 11
| |
| 24 | 6, 23 | eqeltri 2697 |
. . . . . . . . . 10
|
| 25 | 24 | uniex 6953 |
. . . . . . . . 9
|
| 26 | 25 | rnex 7100 |
. . . . . . . 8
|
| 27 | 26 | uniex 6953 |
. . . . . . 7
|
| 28 | 27 | pwex 4848 |
. . . . . 6
|
| 29 | 28, 24 | xpex 6962 |
. . . . 5
|
| 30 | simpl 473 |
. . . . . . . . 9
| |
| 31 | fvssunirn 6217 |
. . . . . . . . . . 11
| |
| 32 | elssuni 4467 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | adantl 482 |
. . . . . . . . . . . 12
|
| 34 | rnss 5354 |
. . . . . . . . . . . 12
| |
| 35 | uniss 4458 |
. . . . . . . . . . . 12
| |
| 36 | 33, 34, 35 | 3syl 18 |
. . . . . . . . . . 11
|
| 37 | 31, 36 | syl5ss 3614 |
. . . . . . . . . 10
|
| 38 | 27 | elpw2 4828 |
. . . . . . . . . 10
|
| 39 | 37, 38 | sylibr 224 |
. . . . . . . . 9
|
| 40 | 30, 39 | eqeltrd 2701 |
. . . . . . . 8
|
| 41 | simpr 477 |
. . . . . . . 8
| |
| 42 | 40, 41 | jca 554 |
. . . . . . 7
|
| 43 | 42 | ssopab2i 5003 |
. . . . . 6
|
| 44 | df-xp 5120 |
. . . . . 6
| |
| 45 | 43, 44 | sseqtr4i 3638 |
. . . . 5
|
| 46 | 29, 45 | ssexi 4803 |
. . . 4
|
| 47 | 21, 22, 46 | fvmpt 6282 |
. . 3
|
| 48 | 15, 47 | syl 17 |
. 2
|
| 49 | 10, 48 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-dic 36462 |
| This theorem is referenced by: dicopelval 36466 dicelvalN 36467 dicval2 36468 dicfnN 36472 dicvalrelN 36474 dicssdvh 36475 dicelval1sta 36476 dihpN 36625 |
| Copyright terms: Public domain | W3C validator |