MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difex2 Structured version   Visualization version   Unicode version

Theorem difex2 6969
Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
difex2  |-  ( B  e.  C  ->  ( A  e.  _V  <->  ( A  \  B )  e.  _V ) )

Proof of Theorem difex2
StepHypRef Expression
1 difexg 4808 . 2  |-  ( A  e.  _V  ->  ( A  \  B )  e. 
_V )
2 ssun2 3777 . . . . 5  |-  A  C_  ( B  u.  A
)
3 uncom 3757 . . . . . 6  |-  ( ( A  \  B )  u.  B )  =  ( B  u.  ( A  \  B ) )
4 undif2 4044 . . . . . 6  |-  ( B  u.  ( A  \  B ) )  =  ( B  u.  A
)
53, 4eqtr2i 2645 . . . . 5  |-  ( B  u.  A )  =  ( ( A  \  B )  u.  B
)
62, 5sseqtri 3637 . . . 4  |-  A  C_  ( ( A  \  B )  u.  B
)
7 unexg 6959 . . . 4  |-  ( ( ( A  \  B
)  e.  _V  /\  B  e.  C )  ->  ( ( A  \  B )  u.  B
)  e.  _V )
8 ssexg 4804 . . . 4  |-  ( ( A  C_  ( ( A  \  B )  u.  B )  /\  (
( A  \  B
)  u.  B )  e.  _V )  ->  A  e.  _V )
96, 7, 8sylancr 695 . . 3  |-  ( ( ( A  \  B
)  e.  _V  /\  B  e.  C )  ->  A  e.  _V )
109expcom 451 . 2  |-  ( B  e.  C  ->  (
( A  \  B
)  e.  _V  ->  A  e.  _V ) )
111, 10impbid2 216 1  |-  ( B  e.  C  ->  ( A  e.  _V  <->  ( A  \  B )  e.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by:  elpwun  6977
  Copyright terms: Public domain W3C validator