Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerval Structured version   Visualization version   Unicode version

Theorem dirkerval 40308
Description: The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dirkerval.1  |-  D  =  ( n  e.  NN  |->  ( s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  pi ) ) ,  ( ( sin `  (
( n  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) ) )
Assertion
Ref Expression
dirkerval  |-  ( N  e.  NN  ->  ( D `  N )  =  ( s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  N )  +  1 )  /  ( 2  x.  pi ) ) ,  ( ( sin `  ( ( N  +  ( 1  /  2
) )  x.  s
) )  /  (
( 2  x.  pi )  x.  ( sin `  ( s  /  2
) ) ) ) ) ) )
Distinct variable groups:    N, s    n, s
Allowed substitution hints:    D( n, s)    N( n)

Proof of Theorem dirkerval
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . 7  |-  ( ( m  =  N  /\  s  e.  RR )  ->  m  =  N )
21oveq2d 6666 . . . . . 6  |-  ( ( m  =  N  /\  s  e.  RR )  ->  ( 2  x.  m
)  =  ( 2  x.  N ) )
32oveq1d 6665 . . . . 5  |-  ( ( m  =  N  /\  s  e.  RR )  ->  ( ( 2  x.  m )  +  1 )  =  ( ( 2  x.  N )  +  1 ) )
43oveq1d 6665 . . . 4  |-  ( ( m  =  N  /\  s  e.  RR )  ->  ( ( ( 2  x.  m )  +  1 )  /  (
2  x.  pi ) )  =  ( ( ( 2  x.  N
)  +  1 )  /  ( 2  x.  pi ) ) )
51oveq1d 6665 . . . . . . 7  |-  ( ( m  =  N  /\  s  e.  RR )  ->  ( m  +  ( 1  /  2 ) )  =  ( N  +  ( 1  / 
2 ) ) )
65oveq1d 6665 . . . . . 6  |-  ( ( m  =  N  /\  s  e.  RR )  ->  ( ( m  +  ( 1  /  2
) )  x.  s
)  =  ( ( N  +  ( 1  /  2 ) )  x.  s ) )
76fveq2d 6195 . . . . 5  |-  ( ( m  =  N  /\  s  e.  RR )  ->  ( sin `  (
( m  +  ( 1  /  2 ) )  x.  s ) )  =  ( sin `  ( ( N  +  ( 1  /  2
) )  x.  s
) ) )
87oveq1d 6665 . . . 4  |-  ( ( m  =  N  /\  s  e.  RR )  ->  ( ( sin `  (
( m  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) )  =  ( ( sin `  (
( N  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) )
94, 8ifeq12d 4106 . . 3  |-  ( ( m  =  N  /\  s  e.  RR )  ->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  m
)  +  1 )  /  ( 2  x.  pi ) ) ,  ( ( sin `  (
( m  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) )  =  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  N )  +  1 )  /  ( 2  x.  pi ) ) ,  ( ( sin `  ( ( N  +  ( 1  /  2
) )  x.  s
) )  /  (
( 2  x.  pi )  x.  ( sin `  ( s  /  2
) ) ) ) ) )
109mpteq2dva 4744 . 2  |-  ( m  =  N  ->  (
s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  m )  +  1 )  / 
( 2  x.  pi ) ) ,  ( ( sin `  (
( m  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) )  =  ( s  e.  RR  |->  if ( ( s  mod  (
2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  N )  +  1 )  /  (
2  x.  pi ) ) ,  ( ( sin `  ( ( N  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) ) )
11 dirkerval.1 . . 3  |-  D  =  ( n  e.  NN  |->  ( s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  pi ) ) ,  ( ( sin `  (
( n  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) ) )
12 simpl 473 . . . . . . . . 9  |-  ( ( n  =  m  /\  s  e.  RR )  ->  n  =  m )
1312oveq2d 6666 . . . . . . . 8  |-  ( ( n  =  m  /\  s  e.  RR )  ->  ( 2  x.  n
)  =  ( 2  x.  m ) )
1413oveq1d 6665 . . . . . . 7  |-  ( ( n  =  m  /\  s  e.  RR )  ->  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  m )  +  1 ) )
1514oveq1d 6665 . . . . . 6  |-  ( ( n  =  m  /\  s  e.  RR )  ->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  pi ) )  =  ( ( ( 2  x.  m
)  +  1 )  /  ( 2  x.  pi ) ) )
1612oveq1d 6665 . . . . . . . . 9  |-  ( ( n  =  m  /\  s  e.  RR )  ->  ( n  +  ( 1  /  2 ) )  =  ( m  +  ( 1  / 
2 ) ) )
1716oveq1d 6665 . . . . . . . 8  |-  ( ( n  =  m  /\  s  e.  RR )  ->  ( ( n  +  ( 1  /  2
) )  x.  s
)  =  ( ( m  +  ( 1  /  2 ) )  x.  s ) )
1817fveq2d 6195 . . . . . . 7  |-  ( ( n  =  m  /\  s  e.  RR )  ->  ( sin `  (
( n  +  ( 1  /  2 ) )  x.  s ) )  =  ( sin `  ( ( m  +  ( 1  /  2
) )  x.  s
) ) )
1918oveq1d 6665 . . . . . 6  |-  ( ( n  =  m  /\  s  e.  RR )  ->  ( ( sin `  (
( n  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) )  =  ( ( sin `  (
( m  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) )
2015, 19ifeq12d 4106 . . . . 5  |-  ( ( n  =  m  /\  s  e.  RR )  ->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  n
)  +  1 )  /  ( 2  x.  pi ) ) ,  ( ( sin `  (
( n  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) )  =  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  m )  +  1 )  /  ( 2  x.  pi ) ) ,  ( ( sin `  ( ( m  +  ( 1  /  2
) )  x.  s
) )  /  (
( 2  x.  pi )  x.  ( sin `  ( s  /  2
) ) ) ) ) )
2120mpteq2dva 4744 . . . 4  |-  ( n  =  m  ->  (
s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  pi ) ) ,  ( ( sin `  (
( n  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) )  =  ( s  e.  RR  |->  if ( ( s  mod  (
2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  m )  +  1 )  /  (
2  x.  pi ) ) ,  ( ( sin `  ( ( m  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) ) )
2221cbvmptv 4750 . . 3  |-  ( n  e.  NN  |->  ( s  e.  RR  |->  if ( ( s  mod  (
2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  pi ) ) ,  ( ( sin `  ( ( n  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) ) )  =  ( m  e.  NN  |->  ( s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  m )  +  1 )  / 
( 2  x.  pi ) ) ,  ( ( sin `  (
( m  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) ) )
2311, 22eqtri 2644 . 2  |-  D  =  ( m  e.  NN  |->  ( s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  m )  +  1 )  / 
( 2  x.  pi ) ) ,  ( ( sin `  (
( m  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) ) )
24 reex 10027 . . 3  |-  RR  e.  _V
2524mptex 6486 . 2  |-  ( s  e.  RR  |->  if ( ( s  mod  (
2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  N )  +  1 )  /  (
2  x.  pi ) ) ,  ( ( sin `  ( ( N  +  ( 1  /  2 ) )  x.  s ) )  /  ( ( 2  x.  pi )  x.  ( sin `  (
s  /  2 ) ) ) ) ) )  e.  _V
2610, 23, 25fvmpt 6282 1  |-  ( N  e.  NN  ->  ( D `  N )  =  ( s  e.  RR  |->  if ( ( s  mod  ( 2  x.  pi ) )  =  0 ,  ( ( ( 2  x.  N )  +  1 )  /  ( 2  x.  pi ) ) ,  ( ( sin `  ( ( N  +  ( 1  /  2
) )  x.  s
) )  /  (
( 2  x.  pi )  x.  ( sin `  ( s  /  2
) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070    mod cmo 12668   sincsin 14794   picpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653
This theorem is referenced by:  dirkerval2  40311  dirkerf  40314  dirkertrigeq  40318  dirkercncflem2  40321  dirkercncflem4  40323
  Copyright terms: Public domain W3C validator