| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjpr2 | Structured version Visualization version Unicode version | ||
| Description: Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| disjpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4180 |
. . . 4
| |
| 2 | 1 | ineq2i 3811 |
. . 3
|
| 3 | indi 3873 |
. . 3
| |
| 4 | 2, 3 | eqtri 2644 |
. 2
|
| 5 | df-pr 4180 |
. . . . . . . 8
| |
| 6 | 5 | ineq1i 3810 |
. . . . . . 7
|
| 7 | indir 3875 |
. . . . . . 7
| |
| 8 | 6, 7 | eqtri 2644 |
. . . . . 6
|
| 9 | disjsn2 4247 |
. . . . . . . 8
| |
| 10 | disjsn2 4247 |
. . . . . . . 8
| |
| 11 | 9, 10 | anim12i 590 |
. . . . . . 7
|
| 12 | un00 4011 |
. . . . . . 7
| |
| 13 | 11, 12 | sylib 208 |
. . . . . 6
|
| 14 | 8, 13 | syl5eq 2668 |
. . . . 5
|
| 15 | 14 | adantr 481 |
. . . 4
|
| 16 | 5 | ineq1i 3810 |
. . . . . . 7
|
| 17 | indir 3875 |
. . . . . . 7
| |
| 18 | 16, 17 | eqtri 2644 |
. . . . . 6
|
| 19 | disjsn2 4247 |
. . . . . . . 8
| |
| 20 | disjsn2 4247 |
. . . . . . . 8
| |
| 21 | 19, 20 | anim12i 590 |
. . . . . . 7
|
| 22 | un00 4011 |
. . . . . . 7
| |
| 23 | 21, 22 | sylib 208 |
. . . . . 6
|
| 24 | 18, 23 | syl5eq 2668 |
. . . . 5
|
| 25 | 24 | adantl 482 |
. . . 4
|
| 26 | 15, 25 | uneq12d 3768 |
. . 3
|
| 27 | un0 3967 |
. . 3
| |
| 28 | 26, 27 | syl6eq 2672 |
. 2
|
| 29 | 4, 28 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: disjprsn 4250 disjtp2 4252 funcnvqp 5952 funcnvqpOLD 5953 |
| Copyright terms: Public domain | W3C validator |