MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjpr2 Structured version   Visualization version   Unicode version

Theorem disjpr2 4248
Description: Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
disjpr2  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { C ,  D } )  =  (/) )

Proof of Theorem disjpr2
StepHypRef Expression
1 df-pr 4180 . . . 4  |-  { C ,  D }  =  ( { C }  u.  { D } )
21ineq2i 3811 . . 3  |-  ( { A ,  B }  i^i  { C ,  D } )  =  ( { A ,  B }  i^i  ( { C }  u.  { D } ) )
3 indi 3873 . . 3  |-  ( { A ,  B }  i^i  ( { C }  u.  { D } ) )  =  ( ( { A ,  B }  i^i  { C }
)  u.  ( { A ,  B }  i^i  { D } ) )
42, 3eqtri 2644 . 2  |-  ( { A ,  B }  i^i  { C ,  D } )  =  ( ( { A ,  B }  i^i  { C } )  u.  ( { A ,  B }  i^i  { D } ) )
5 df-pr 4180 . . . . . . . 8  |-  { A ,  B }  =  ( { A }  u.  { B } )
65ineq1i 3810 . . . . . . 7  |-  ( { A ,  B }  i^i  { C } )  =  ( ( { A }  u.  { B } )  i^i  { C } )
7 indir 3875 . . . . . . 7  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( ( { A }  i^i  { C } )  u.  ( { B }  i^i  { C } ) )
86, 7eqtri 2644 . . . . . 6  |-  ( { A ,  B }  i^i  { C } )  =  ( ( { A }  i^i  { C } )  u.  ( { B }  i^i  { C } ) )
9 disjsn2 4247 . . . . . . . 8  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
10 disjsn2 4247 . . . . . . . 8  |-  ( B  =/=  C  ->  ( { B }  i^i  { C } )  =  (/) )
119, 10anim12i 590 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  i^i  { C }
)  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) )
12 un00 4011 . . . . . . 7  |-  ( ( ( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) 
<->  ( ( { A }  i^i  { C }
)  u.  ( { B }  i^i  { C } ) )  =  (/) )
1311, 12sylib 208 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  i^i  { C }
)  u.  ( { B }  i^i  { C } ) )  =  (/) )
148, 13syl5eq 2668 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
1514adantr 481 . . . 4  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
165ineq1i 3810 . . . . . . 7  |-  ( { A ,  B }  i^i  { D } )  =  ( ( { A }  u.  { B } )  i^i  { D } )
17 indir 3875 . . . . . . 7  |-  ( ( { A }  u.  { B } )  i^i 
{ D } )  =  ( ( { A }  i^i  { D } )  u.  ( { B }  i^i  { D } ) )
1816, 17eqtri 2644 . . . . . 6  |-  ( { A ,  B }  i^i  { D } )  =  ( ( { A }  i^i  { D } )  u.  ( { B }  i^i  { D } ) )
19 disjsn2 4247 . . . . . . . 8  |-  ( A  =/=  D  ->  ( { A }  i^i  { D } )  =  (/) )
20 disjsn2 4247 . . . . . . . 8  |-  ( B  =/=  D  ->  ( { B }  i^i  { D } )  =  (/) )
2119, 20anim12i 590 . . . . . . 7  |-  ( ( A  =/=  D  /\  B  =/=  D )  -> 
( ( { A }  i^i  { D }
)  =  (/)  /\  ( { B }  i^i  { D } )  =  (/) ) )
22 un00 4011 . . . . . . 7  |-  ( ( ( { A }  i^i  { D } )  =  (/)  /\  ( { B }  i^i  { D } )  =  (/) ) 
<->  ( ( { A }  i^i  { D }
)  u.  ( { B }  i^i  { D } ) )  =  (/) )
2321, 22sylib 208 . . . . . 6  |-  ( ( A  =/=  D  /\  B  =/=  D )  -> 
( ( { A }  i^i  { D }
)  u.  ( { B }  i^i  { D } ) )  =  (/) )
2418, 23syl5eq 2668 . . . . 5  |-  ( ( A  =/=  D  /\  B  =/=  D )  -> 
( { A ,  B }  i^i  { D } )  =  (/) )
2524adantl 482 . . . 4  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { D } )  =  (/) )
2615, 25uneq12d 3768 . . 3  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A ,  B }  i^i  { C } )  u.  ( { A ,  B }  i^i  { D } ) )  =  ( (/)  u.  (/) ) )
27 un0 3967 . . 3  |-  ( (/)  u.  (/) )  =  (/)
2826, 27syl6eq 2672 . 2  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( ( { A ,  B }  i^i  { C } )  u.  ( { A ,  B }  i^i  { D } ) )  =  (/) )
294, 28syl5eq 2668 1  |-  ( ( ( A  =/=  C  /\  B  =/=  C
)  /\  ( A  =/=  D  /\  B  =/= 
D ) )  -> 
( { A ,  B }  i^i  { C ,  D } )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  disjprsn  4250  disjtp2  4252  funcnvqp  5952  funcnvqpOLD  5953
  Copyright terms: Public domain W3C validator