Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djavalN Structured version   Visualization version   Unicode version

Theorem djavalN 36424
Description: Subspace join for  DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h  |-  H  =  ( LHyp `  K
)
djaval.t  |-  T  =  ( ( LTrn `  K
) `  W )
djaval.i  |-  I  =  ( ( DIsoA `  K
) `  W )
djaval.n  |-  ._|_  =  ( ( ocA `  K
) `  W )
djaval.j  |-  J  =  ( ( vA `  K ) `  W
)
Assertion
Ref Expression
djavalN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  ( X J Y )  =  (  ._|_  `  ( ( 
._|_  `  X )  i^i  (  ._|_  `  Y ) ) ) )

Proof of Theorem djavalN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djaval.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 djaval.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3 djaval.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
4 djaval.n . . . . 5  |-  ._|_  =  ( ( ocA `  K
) `  W )
5 djaval.j . . . . 5  |-  J  =  ( ( vA `  K ) `  W
)
61, 2, 3, 4, 5djafvalN 36423 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  J  =  ( x  e.  ~P T , 
y  e.  ~P T  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) )
76adantr 481 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  J  =  ( x  e. 
~P T ,  y  e.  ~P T  |->  ( 
._|_  `  ( (  ._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) )
87oveqd 6667 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  ( X J Y )  =  ( X ( x  e.  ~P T , 
y  e.  ~P T  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) Y ) )
9 fvex 6201 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  e.  _V
102, 9eqeltri 2697 . . . . . 6  |-  T  e. 
_V
1110elpw2 4828 . . . . 5  |-  ( X  e.  ~P T  <->  X  C_  T
)
1211biimpri 218 . . . 4  |-  ( X 
C_  T  ->  X  e.  ~P T )
1312ad2antrl 764 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  X  e.  ~P T )
1410elpw2 4828 . . . . 5  |-  ( Y  e.  ~P T  <->  Y  C_  T
)
1514biimpri 218 . . . 4  |-  ( Y 
C_  T  ->  Y  e.  ~P T )
1615ad2antll 765 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  Y  e.  ~P T )
17 fvexd 6203 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  (  ._|_  `  Y ) ) )  e.  _V )
18 fveq2 6191 . . . . . 6  |-  ( x  =  X  ->  (  ._|_  `  x )  =  (  ._|_  `  X ) )
1918ineq1d 3813 . . . . 5  |-  ( x  =  X  ->  (
(  ._|_  `  x )  i^i  (  ._|_  `  y
) )  =  ( (  ._|_  `  X )  i^i  (  ._|_  `  y
) ) )
2019fveq2d 6195 . . . 4  |-  ( x  =  X  ->  (  ._|_  `  ( (  ._|_  `  x )  i^i  (  ._|_  `  y ) ) )  =  (  ._|_  `  ( (  ._|_  `  X
)  i^i  (  ._|_  `  y ) ) ) )
21 fveq2 6191 . . . . . 6  |-  ( y  =  Y  ->  (  ._|_  `  y )  =  (  ._|_  `  Y ) )
2221ineq2d 3814 . . . . 5  |-  ( y  =  Y  ->  (
(  ._|_  `  X )  i^i  (  ._|_  `  y
) )  =  ( (  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) )
2322fveq2d 6195 . . . 4  |-  ( y  =  Y  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  (  ._|_  `  y ) ) )  =  (  ._|_  `  ( (  ._|_  `  X
)  i^i  (  ._|_  `  Y ) ) ) )
24 eqid 2622 . . . 4  |-  ( x  e.  ~P T , 
y  e.  ~P T  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) )  =  ( x  e.  ~P T ,  y  e.  ~P T  |->  (  ._|_  `  ( (  ._|_  `  x
)  i^i  (  ._|_  `  y ) ) ) )
2520, 23, 24ovmpt2g 6795 . . 3  |-  ( ( X  e.  ~P T  /\  Y  e.  ~P T  /\  (  ._|_  `  (
(  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) )  e. 
_V )  ->  ( X ( x  e. 
~P T ,  y  e.  ~P T  |->  ( 
._|_  `  ( (  ._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) Y )  =  (  ._|_  `  (
(  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) ) )
2613, 16, 17, 25syl3anc 1326 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  ( X ( x  e. 
~P T ,  y  e.  ~P T  |->  ( 
._|_  `  ( (  ._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) Y )  =  (  ._|_  `  (
(  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) ) )
278, 26eqtrd 2656 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  ( X J Y )  =  (  ._|_  `  ( ( 
._|_  `  X )  i^i  (  ._|_  `  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317   ocAcocaN 36408   vAcdjaN 36420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-djaN 36421
This theorem is referenced by:  djaclN  36425  djajN  36426
  Copyright terms: Public domain W3C validator