Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochval Structured version   Visualization version   Unicode version

Theorem dochval 36640
Description: Subspace orthocomplement for  DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b  |-  B  =  ( Base `  K
)
dochval.g  |-  G  =  ( glb `  K
)
dochval.o  |-  ._|_  =  ( oc `  K )
dochval.h  |-  H  =  ( LHyp `  K
)
dochval.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dochval.u  |-  U  =  ( ( DVecH `  K
) `  W )
dochval.v  |-  V  =  ( Base `  U
)
dochval.n  |-  N  =  ( ( ocH `  K
) `  W )
Assertion
Ref Expression
dochval  |-  ( ( ( K  e.  Y  /\  W  e.  H
)  /\  X  C_  V
)  ->  ( N `  X )  =  ( I `  (  ._|_  `  ( G `  {
y  e.  B  |  X  C_  ( I `  y ) } ) ) ) )
Distinct variable groups:    y, B    y, K    y, W    y, X
Allowed substitution hints:    U( y)    G( y)    H( y)    I( y)    N( y)    ._|_ ( y)    V( y)    Y( y)

Proof of Theorem dochval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dochval.b . . . . 5  |-  B  =  ( Base `  K
)
2 dochval.g . . . . 5  |-  G  =  ( glb `  K
)
3 dochval.o . . . . 5  |-  ._|_  =  ( oc `  K )
4 dochval.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 dochval.i . . . . 5  |-  I  =  ( ( DIsoH `  K
) `  W )
6 dochval.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
7 dochval.v . . . . 5  |-  V  =  ( Base `  U
)
8 dochval.n . . . . 5  |-  N  =  ( ( ocH `  K
) `  W )
91, 2, 3, 4, 5, 6, 7, 8dochfval 36639 . . . 4  |-  ( ( K  e.  Y  /\  W  e.  H )  ->  N  =  ( x  e.  ~P V  |->  ( I `  (  ._|_  `  ( G `  {
y  e.  B  |  x  C_  ( I `  y ) } ) ) ) ) )
109adantr 481 . . 3  |-  ( ( ( K  e.  Y  /\  W  e.  H
)  /\  X  C_  V
)  ->  N  =  ( x  e.  ~P V  |->  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( I `
 y ) } ) ) ) ) )
1110fveq1d 6193 . 2  |-  ( ( ( K  e.  Y  /\  W  e.  H
)  /\  X  C_  V
)  ->  ( N `  X )  =  ( ( x  e.  ~P V  |->  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( I `
 y ) } ) ) ) ) `
 X ) )
12 fvex 6201 . . . . . . 7  |-  ( Base `  U )  e.  _V
137, 12eqeltri 2697 . . . . . 6  |-  V  e. 
_V
1413elpw2 4828 . . . . 5  |-  ( X  e.  ~P V  <->  X  C_  V
)
1514biimpri 218 . . . 4  |-  ( X 
C_  V  ->  X  e.  ~P V )
1615adantl 482 . . 3  |-  ( ( ( K  e.  Y  /\  W  e.  H
)  /\  X  C_  V
)  ->  X  e.  ~P V )
17 fvex 6201 . . 3  |-  ( I `
 (  ._|_  `  ( G `  { y  e.  B  |  X  C_  ( I `  y
) } ) ) )  e.  _V
18 sseq1 3626 . . . . . . . 8  |-  ( x  =  X  ->  (
x  C_  ( I `  y )  <->  X  C_  (
I `  y )
) )
1918rabbidv 3189 . . . . . . 7  |-  ( x  =  X  ->  { y  e.  B  |  x 
C_  ( I `  y ) }  =  { y  e.  B  |  X  C_  ( I `
 y ) } )
2019fveq2d 6195 . . . . . 6  |-  ( x  =  X  ->  ( G `  { y  e.  B  |  x  C_  ( I `  y
) } )  =  ( G `  {
y  e.  B  |  X  C_  ( I `  y ) } ) )
2120fveq2d 6195 . . . . 5  |-  ( x  =  X  ->  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( I `
 y ) } ) )  =  ( 
._|_  `  ( G `  { y  e.  B  |  X  C_  ( I `
 y ) } ) ) )
2221fveq2d 6195 . . . 4  |-  ( x  =  X  ->  (
I `  (  ._|_  `  ( G `  {
y  e.  B  |  x  C_  ( I `  y ) } ) ) )  =  ( I `  (  ._|_  `  ( G `  {
y  e.  B  |  X  C_  ( I `  y ) } ) ) ) )
23 eqid 2622 . . . 4  |-  ( x  e.  ~P V  |->  ( I `  (  ._|_  `  ( G `  {
y  e.  B  |  x  C_  ( I `  y ) } ) ) ) )  =  ( x  e.  ~P V  |->  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( I `
 y ) } ) ) ) )
2422, 23fvmptg 6280 . . 3  |-  ( ( X  e.  ~P V  /\  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  X  C_  ( I `
 y ) } ) ) )  e. 
_V )  ->  (
( x  e.  ~P V  |->  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( I `
 y ) } ) ) ) ) `
 X )  =  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  X  C_  ( I `
 y ) } ) ) ) )
2516, 17, 24sylancl 694 . 2  |-  ( ( ( K  e.  Y  /\  W  e.  H
)  /\  X  C_  V
)  ->  ( (
x  e.  ~P V  |->  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( I `
 y ) } ) ) ) ) `
 X )  =  ( I `  (  ._|_  `  ( G `  { y  e.  B  |  X  C_  ( I `
 y ) } ) ) ) )
2611, 25eqtrd 2656 1  |-  ( ( ( K  e.  Y  /\  W  e.  H
)  /\  X  C_  V
)  ->  ( N `  X )  =  ( I `  (  ._|_  `  ( G `  {
y  e.  B  |  X  C_  ( I `  y ) } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   occoc 15949   glbcglb 16943   LHypclh 35270   DVecHcdvh 36367   DIsoHcdih 36517   ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-doch 36637
This theorem is referenced by:  dochval2  36641  dochcl  36642  dochvalr  36646  dochss  36654
  Copyright terms: Public domain W3C validator