Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochss Structured version   Visualization version   Unicode version

Theorem dochss 36654
Description: Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h  |-  H  =  ( LHyp `  K
)
dochss.u  |-  U  =  ( ( DVecH `  K
) `  W )
dochss.v  |-  V  =  ( Base `  U
)
dochss.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
Assertion
Ref Expression
dochss  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y
)  C_  (  ._|_  `  X ) )

Proof of Theorem dochss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp1l 1085 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  K  e.  HL )
2 hlclat 34645 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
31, 2syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  K  e.  CLat )
4 ssrab2 3687 . . . . . 6  |-  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
)
54a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
) )
6 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  /\  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z )
)  ->  X  C_  Y
)
7 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  /\  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z )
)  ->  Y  C_  (
( ( DIsoH `  K
) `  W ) `  z ) )
86, 7sstrd 3613 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  /\  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z )
)  ->  X  C_  (
( ( DIsoH `  K
) `  W ) `  z ) )
98ex 450 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  ->  ( Y  C_  ( ( (
DIsoH `  K ) `  W ) `  z
)  ->  X  C_  (
( ( DIsoH `  K
) `  W ) `  z ) ) )
109ss2rabdv 3683 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )
11 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2622 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2622 . . . . . 6  |-  ( glb `  K )  =  ( glb `  K )
1411, 12, 13clatglbss 17127 . . . . 5  |-  ( ( K  e.  CLat  /\  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
)  /\  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  ->  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )
153, 5, 10, 14syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( glb `  K ) `  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )
16 hlop 34649 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
171, 16syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  K  e.  OP )
1811, 13clatglbcl 17114 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
) )  ->  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
193, 4, 18sylancl 694 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( glb `  K ) `  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
20 ssrab2 3687 . . . . . 6  |-  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
)
2111, 13clatglbcl 17114 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
z  e.  ( Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
) )  ->  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
223, 20, 21sylancl 694 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( glb `  K ) `  {
z  e.  ( Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
23 eqid 2622 . . . . . 6  |-  ( oc
`  K )  =  ( oc `  K
)
2411, 12, 23oplecon3b 34487 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)  ->  ( (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  <->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
2517, 19, 22, 24syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( ( glb `  K ) `
 { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  <->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
2615, 25mpbid 222 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) )
27 simp1 1061 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( K  e.  HL  /\  W  e.  H ) )
2811, 23opoccl 34481 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)  ->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
2917, 22, 28syl2anc 693 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
3011, 23opoccl 34481 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)  ->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
3117, 19, 30syl2anc 693 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
32 dochss.h . . . . 5  |-  H  =  ( LHyp `  K
)
33 eqid 2622 . . . . 5  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
3411, 12, 32, 33dihord 36553 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
)  /\  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )  ->  (
( ( ( DIsoH `  K ) `  W
) `  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) 
C_  ( ( (
DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  <->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
3527, 29, 31, 34syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( ( ( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  C_  ( (
( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  <->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
3626, 35mpbird 247 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( (
DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  C_  ( (
( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) ) )
37 dochss.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
38 dochss.v . . . 4  |-  V  =  ( Base `  U
)
39 dochss.o . . . 4  |-  ._|_  =  ( ( ocH `  K
) `  W )
4011, 13, 23, 32, 33, 37, 38, 39dochval 36640 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V
)  ->  (  ._|_  `  Y )  =  ( ( ( DIsoH `  K
) `  W ) `  ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
41403adant3 1081 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y
)  =  ( ( ( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) ) )
42 simp3 1063 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  X  C_  Y
)
43 simp2 1062 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  Y  C_  V
)
4442, 43sstrd 3613 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  X  C_  V
)
4511, 13, 23, 32, 33, 37, 38, 39dochval 36640 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  (  ._|_  `  X )  =  ( ( ( DIsoH `  K
) `  W ) `  ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
4627, 44, 45syl2anc 693 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  X
)  =  ( ( ( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) ) )
4736, 41, 463sstr4d 3648 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y
)  C_  (  ._|_  `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   occoc 15949   glbcglb 16943   CLatccla 17107   OPcops 34459   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367   DIsoHcdih 36517   ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637
This theorem is referenced by:  dochsscl  36657  dochord  36659  dihoml4  36666  dochocsp  36668  dochdmj1  36679  dochpolN  36779  lclkrlem2p  36811  lclkrslem1  36826  lclkrslem2  36827  lcfrvalsnN  36830  mapdsn  36930
  Copyright terms: Public domain W3C validator