Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfv2d Structured version   Visualization version   Unicode version

Theorem dssmapfv2d 38312
Description: Value of the duality operator for self-mappings of subsets of a base set,  B when applied to function  F. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o  |-  O  =  ( b  e.  _V  |->  ( f  e.  ( ~P b  ^m  ~P b )  |->  ( s  e.  ~P b  |->  ( b  \  ( f `
 ( b  \ 
s ) ) ) ) ) )
dssmapfvd.d  |-  D  =  ( O `  B
)
dssmapfvd.b  |-  ( ph  ->  B  e.  V )
dssmapfv2d.f  |-  ( ph  ->  F  e.  ( ~P B  ^m  ~P B
) )
dssmapfv2d.g  |-  G  =  ( D `  F
)
Assertion
Ref Expression
dssmapfv2d  |-  ( ph  ->  G  =  ( s  e.  ~P B  |->  ( B  \  ( F `
 ( B  \ 
s ) ) ) ) )
Distinct variable groups:    B, b,
f, s    f, F, s    ph, b, f
Allowed substitution hints:    ph( s)    D( f, s, b)    F( b)    G( f, s, b)    O( f, s, b)    V( f, s, b)

Proof of Theorem dssmapfv2d
StepHypRef Expression
1 dssmapfv2d.g . 2  |-  G  =  ( D `  F
)
2 dssmapfvd.o . . . 4  |-  O  =  ( b  e.  _V  |->  ( f  e.  ( ~P b  ^m  ~P b )  |->  ( s  e.  ~P b  |->  ( b  \  ( f `
 ( b  \ 
s ) ) ) ) ) )
3 dssmapfvd.d . . . 4  |-  D  =  ( O `  B
)
4 dssmapfvd.b . . . 4  |-  ( ph  ->  B  e.  V )
52, 3, 4dssmapfvd 38311 . . 3  |-  ( ph  ->  D  =  ( f  e.  ( ~P B  ^m  ~P B )  |->  ( s  e.  ~P B  |->  ( B  \  (
f `  ( B  \  s ) ) ) ) ) )
6 fveq1 6190 . . . . . 6  |-  ( f  =  F  ->  (
f `  ( B  \  s ) )  =  ( F `  ( B  \  s ) ) )
76difeq2d 3728 . . . . 5  |-  ( f  =  F  ->  ( B  \  ( f `  ( B  \  s
) ) )  =  ( B  \  ( F `  ( B  \  s ) ) ) )
87mpteq2dv 4745 . . . 4  |-  ( f  =  F  ->  (
s  e.  ~P B  |->  ( B  \  (
f `  ( B  \  s ) ) ) )  =  ( s  e.  ~P B  |->  ( B  \  ( F `
 ( B  \ 
s ) ) ) ) )
98adantl 482 . . 3  |-  ( (
ph  /\  f  =  F )  ->  (
s  e.  ~P B  |->  ( B  \  (
f `  ( B  \  s ) ) ) )  =  ( s  e.  ~P B  |->  ( B  \  ( F `
 ( B  \ 
s ) ) ) ) )
10 dssmapfv2d.f . . 3  |-  ( ph  ->  F  e.  ( ~P B  ^m  ~P B
) )
11 pwexg 4850 . . . 4  |-  ( B  e.  V  ->  ~P B  e.  _V )
12 mptexg 6484 . . . 4  |-  ( ~P B  e.  _V  ->  ( s  e.  ~P B  |->  ( B  \  ( F `  ( B  \  s ) ) ) )  e.  _V )
134, 11, 123syl 18 . . 3  |-  ( ph  ->  ( s  e.  ~P B  |->  ( B  \ 
( F `  ( B  \  s ) ) ) )  e.  _V )
145, 9, 10, 13fvmptd 6288 . 2  |-  ( ph  ->  ( D `  F
)  =  ( s  e.  ~P B  |->  ( B  \  ( F `
 ( B  \ 
s ) ) ) ) )
151, 14syl5eq 2668 1  |-  ( ph  ->  G  =  ( s  e.  ~P B  |->  ( B  \  ( F `
 ( B  \ 
s ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653
This theorem is referenced by:  dssmapfv3d  38313
  Copyright terms: Public domain W3C validator