Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaset Structured version   Visualization version   Unicode version

Theorem dvaset 36293
Description: The constructed partial vector space A for a lattice  K. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvaset.h  |-  H  =  ( LHyp `  K
)
dvaset.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvaset.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvaset.d  |-  D  =  ( ( EDRing `  K
) `  W )
dvaset.u  |-  U  =  ( ( DVecA `  K
) `  W )
Assertion
Ref Expression
dvaset  |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
Distinct variable groups:    f, g,
s, K    f, W, g, s
Allowed substitution hints:    D( f, g, s)    T( f, g, s)    U( f, g, s)    E( f, g, s)    H( f, g, s)    X( f, g, s)

Proof of Theorem dvaset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvaset.u . 2  |-  U  =  ( ( DVecA `  K
) `  W )
2 dvaset.h . . . . 5  |-  H  =  ( LHyp `  K
)
32dvafset 36292 . . . 4  |-  ( K  e.  X  ->  ( DVecA `  K )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) )
43fveq1d 6193 . . 3  |-  ( K  e.  X  ->  (
( DVecA `  K ) `  W )  =  ( ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) `  W ) )
5 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
6 dvaset.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
75, 6syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  T )
87opeq2d 4409 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  T >. )
9 eqidd 2623 . . . . . . . 8  |-  ( w  =  W  ->  (
f  o.  g )  =  ( f  o.  g ) )
107, 7, 9mpt2eq123dv 6717 . . . . . . 7  |-  ( w  =  W  ->  (
f  e.  ( (
LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w
)  |->  ( f  o.  g ) )  =  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) )
1110opeq2d 4409 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>.  =  <. ( +g  ` 
ndx ) ,  ( f  e.  T , 
g  e.  T  |->  ( f  o.  g ) ) >. )
12 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  (
( EDRing `  K ) `  w )  =  ( ( EDRing `  K ) `  W ) )
13 dvaset.d . . . . . . . 8  |-  D  =  ( ( EDRing `  K
) `  W )
1412, 13syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  (
( EDRing `  K ) `  w )  =  D )
1514opeq2d 4409 . . . . . 6  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ( EDRing `  K ) `  w ) >.  =  <. (Scalar `  ndx ) ,  D >. )
168, 11, 15tpeq123d 4283 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  =  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. } )
17 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  ( ( TEndo `  K ) `  W ) )
18 dvaset.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
1917, 18syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  E )
20 eqidd 2623 . . . . . . . 8  |-  ( w  =  W  ->  (
s `  f )  =  ( s `  f ) )
2119, 7, 20mpt2eq123dv 6717 . . . . . . 7  |-  ( w  =  W  ->  (
s  e.  ( (
TEndo `  K ) `  w ) ,  f  e.  ( ( LTrn `  K ) `  w
)  |->  ( s `  f ) )  =  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) )
2221opeq2d 4409 . . . . . 6  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  f  e.  ( ( LTrn `  K ) `  w
)  |->  ( s `  f ) ) >.  =  <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `
 f ) )
>. )
2322sneqd 4189 . . . . 5  |-  ( w  =  W  ->  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. }  =  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. } )
2416, 23uneq12d 3768 . . . 4  |-  ( w  =  W  ->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
25 eqid 2622 . . . 4  |-  ( w  e.  H  |->  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) )
26 tpex 6957 . . . . 5  |-  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  e.  _V
27 snex 4908 . . . . 5  |-  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. }  e.  _V
2826, 27unex 6956 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } )  e.  _V
2924, 25, 28fvmpt 6282 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) `  W )  =  ( { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
304, 29sylan9eq 2676 . 2  |-  ( ( K  e.  X  /\  W  e.  H )  ->  ( ( DVecA `  K
) `  W )  =  ( { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. } ) )
311, 30syl5eq 2668 1  |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572   {csn 4177   {ctp 4181   <.cop 4183    |-> cmpt 4729    o. ccom 5118   ` cfv 5888    |-> cmpt2 6652   ndxcnx 15854   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   EDRingcedring 36041   DVecAcdveca 36290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-dveca 36291
This theorem is referenced by:  dvasca  36294  dvavbase  36301  dvafvadd  36302  dvafvsca  36304  dvaabl  36313
  Copyright terms: Public domain W3C validator