HomeHome Metamath Proof Explorer
Theorem List (p. 363 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 36201-36300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdlemk36 36201* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) )  ->  ( z `
  P )  =  Y ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) 
 /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) ) ) ) 
 ->  ( X `  P )  =  Y )
 
Theoremcdlemk37 36202* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) )  ->  ( z `
  P )  =  Y ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) 
 /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) ) ) ) 
 ->  ( X `  P )  .<_  ( P  .\/  ( R `  G ) ) )
 
Theoremcdlemk38 36203* Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. TODO: derive more directly with r19.23 3022? (Contributed by NM, 19-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) )  ->  ( z `
  P )  =  Y ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) 
 /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) 
 /\  N  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) ) 
 ->  ( X `  P )  .<_  ( P  .\/  ( R `  G ) ) )
 
Theoremcdlemk39 36204* Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. Trace-preserving property of tau, represented by  X. (Contributed by NM, 19-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) )  ->  ( z `
  P )  =  Y ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) 
 /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) 
 /\  N  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) ) 
 ->  ( R `  X )  .<_  ( R `  G ) )
 
Theoremcdlemk40 36205* TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
 |-  X  =  ( iota_ z  e.  T  ph )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )   =>    |-  ( G  e.  T  ->  ( U `  G )  =  if ( F  =  N ,  G ,  [_ G  /  g ]_ X ) )
 
Theoremcdlemk40t 36206* TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
 |-  X  =  ( iota_ z  e.  T  ph )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )   =>    |-  ( ( F  =  N  /\  G  e.  T )  ->  ( U `  G )  =  G )
 
Theoremcdlemk40f 36207* TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
 |-  X  =  ( iota_ z  e.  T  ph )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )   =>    |-  ( ( F  =/=  N 
 /\  G  e.  T )  ->  ( U `  G )  =  [_ G  /  g ]_ X )
 
Theoremcdlemk41 36208* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.)
 |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   =>    |-  ( G  e.  T  -> 
 [_ G  /  g ]_ Y  =  (
 ( P  .\/  ( R `  G ) ) 
 ./\  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) ) )
 
Theoremcdlemkfid1N 36209 Lemma for cdlemkfid3N 36213. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T )  /\  (
 ( R `  G )  =/=  ( R `  F )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( P  .\/  ( R `  G ) )  ./\  ( ( F `  P )  .\/  ( R `
  ( G  o.  `' F ) ) ) )  =  ( G `
  P ) )
 
Theoremcdlemkid1 36210 Lemma for cdlemkid 36224. (Contributed by NM, 24-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( Z  .\/  ( R `
  b ) )  =  ( P  .\/  ( R `  b ) ) )
 
Theoremcdlemkfid2N 36211 Lemma for cdlemkfid3N 36213. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  =  N )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  b  e.  T )  /\  ( ( R `  b )  =/=  ( R `  F )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  Z  =  ( b `  P ) )
 
Theoremcdlemkid2 36212* Lemma for cdlemkid 36224. (Contributed by NM, 24-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ G  /  g ]_ Y  =  P )
 
Theoremcdlemkfid3N 36213* TODO: is this useful or should it be deleted? (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  =  N ) 
 /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  G  e.  T  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) )  /\  (
 ( R `  b
 )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  [_ G  /  g ]_ Y  =  ( G `  P ) )
 
Theoremcdlemky 36214* Part of proof of Lemma K of [Crawley] p. 118. TODO: clean up  ( b Y G ) stuff.  V represents  Y in cdlemk31 36184. (Contributed by NM, 21-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P )  =  (
 ( P  .\/  ( R `  f ) ) 
 ./\  ( ( N `
  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )   &    |-  V  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
 ( S `  d
 ) `  P )  .\/  ( R `  (
 e  o.  `' d
 ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G ) ) ) )  ->  [_ G  /  g ]_ Y  =  ( ( b V G ) `  P ) )
 
Theoremcdlemkyu 36215* Convert between function and explicit forms.  C represents  Z in cdlemkuu 36183. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P )  =  (
 ( P  .\/  ( R `  f ) ) 
 ./\  ( ( N `
  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )   &    |-  V  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
 ( S `  d
 ) `  P )  .\/  ( R `  (
 e  o.  `' d
 ) ) ) ) ) )   &    |-  Q  =  ( S `  b )   &    |-  C  =  ( e  e.  T  |->  ( iota_ j  e.  T  ( j `  P )  =  (
 ( P  .\/  ( R `  e ) ) 
 ./\  ( ( Q `
  P )  .\/  ( R `  ( e  o.  `' b ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G ) ) ) )  ->  [_ G  /  g ]_ Y  =  ( ( C `  G ) `  P ) )
 
Theoremcdlemkyuu 36216* cdlemkyu 36215 with some hypotheses eliminated. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P )  =  (
 ( P  .\/  ( R `  f ) ) 
 ./\  ( ( N `
  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )   &    |-  C  =  ( e  e.  T  |->  (
 iota_ j  e.  T  ( j `  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( ( S `
  b ) `  P )  .\/  ( R `
  ( e  o.  `' b ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) 
 /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) ) ) ) 
 ->  [_ G  /  g ]_ Y  =  (
 ( C `  G ) `  P ) )
 
Theoremcdlemk11ta 36217* Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119.  G,  I stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P )  =  (
 ( P  .\/  ( R `  f ) ) 
 ./\  ( ( N `
  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )   &    |-  C  =  ( e  e.  T  |->  (
 iota_ j  e.  T  ( j `  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( ( S `
  b ) `  P )  .\/  ( R `
  ( e  o.  `' b ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) 
 /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  I ) ) ) )  ->  [_ G  /  g ]_ Y  .<_  (
 [_ I  /  g ]_ Y  .\/  ( R `
  ( I  o.  `' G ) ) ) )
 
Theoremcdlemk19ylem 36218* Lemma for cdlemk19y 36220. (Contributed by NM, 30-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P )  =  (
 ( P  .\/  ( R `  f ) ) 
 ./\  ( ( N `
  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )   &    |-  C  =  ( e  e.  T  |->  (
 iota_ j  e.  T  ( j `  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( ( ( S `
  b ) `  P )  .\/  ( R `
  ( e  o.  `' b ) ) ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F ) ) ) )  ->  [_ F  /  g ]_ Y  =  ( N `  P ) )
 
Theoremcdlemk11tb 36219* Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119.  G,  I stand for g, h. cdlemk11ta 36217 with hypotheses removed. TODO: Can this be proved directly with no quantification? (Contributed by NM, 21-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G ) ) 
 /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  I ) ) ) )  ->  [_ G  /  g ]_ Y  .<_  (
 [_ I  /  g ]_ Y  .\/  ( R `
  ( I  o.  `' G ) ) ) )
 
Theoremcdlemk19y 36220* cdlemk19 36157 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F ) ) ) ) 
 ->  [_ F  /  g ]_ Y  =  ( N `  P ) )
 
Theoremcdlemkid3N 36221* Lemma for cdlemkid 36224. (Contributed by NM, 25-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )
 ) )  ->  [_ G  /  g ]_ X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) )  ->  ( z `
  P )  =  P ) ) )
 
Theoremcdlemkid4 36222* Lemma for cdlemkid 36224. (Contributed by NM, 25-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )
 ) )  ->  [_ G  /  g ]_ X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) )  ->  z  =  (  _I  |`  B ) ) ) )
 
Theoremcdlemkid5 36223* Lemma for cdlemkid 36224. (Contributed by NM, 25-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )
 ) )  ->  [_ G  /  g ]_ X  e.  T )
 
Theoremcdlemkid 36224* The value of the tau function (in Lemma K of [Crawley] p. 118) on the identity relation. (Contributed by NM, 25-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )
 ) )  ->  [_ G  /  g ]_ X  =  (  _I  |`  B )
 )
 
Theoremcdlemk35s 36225* Substitution version of cdlemk35 36200. (Contributed by NM, 22-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) ) )  ->  [_ G  /  g ]_ X  e.  T )
 
Theoremcdlemk35s-id 36226* Substitution version of cdlemk35 36200. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  G  e.  T  /\  N  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) ) )  ->  [_ G  /  g ]_ X  e.  T )
 
Theoremcdlemk39s 36227* Substitution version of cdlemk39 36204. TODO: Can any commonality with cdlemk35s 36225 be exploited? (Contributed by NM, 23-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  /  g ]_ X ) 
 .<_  ( R `  G ) )
 
Theoremcdlemk39s-id 36228* Substitution version of cdlemk39 36204 with non-identity requirement on  G removed. TODO: Can any commonality with cdlemk35s 36225 be exploited? (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  G  e.  T  /\  N  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  /  g ]_ X ) 
 .<_  ( R `  G ) )
 
Theoremcdlemk42 36229* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 20-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G ) ) ) )  ->  ( [_ G  /  g ]_ X `  P )  =  [_ G  /  g ]_ Y )
 
Theoremcdlemk19xlem 36230* Lemma for cdlemk19x 36231. (Contributed by NM, 30-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F ) ) ) ) 
 ->  ( [_ F  /  g ]_ X `  P )  =  ( N `  P ) )
 
Theoremcdlemk19x 36231* cdlemk19 36157 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 ->  ( [_ F  /  g ]_ X `  P )  =  ( N `  P ) )
 
Theoremcdlemk42yN 36232* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 20-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G ) ) ) )  ->  ( [_ G  /  g ]_ X `  P )  =  ( ( P 
 .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `
  ( G  o.  `' b ) ) ) ) )
 
Theoremcdlemk11tc 36233* Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119.  G,  I stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
 b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G ) ) 
 /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  I ) ) ) )  ->  ( [_ G  /  g ]_ X `  P ) 
 .<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `
  ( I  o.  `' G ) ) ) )
 
Theoremcdlemk11t 36234* Part of proof of Lemma K of [Crawley] p. 118. Eq. 5, line 36, p. 119.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 21-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( [_ G  /  g ]_ X `  P ) 
 .<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `
  ( I  o.  `' G ) ) ) )
 
Theoremcdlemk45 36235* Part of proof of Lemma K of [Crawley] p. 118. Line 37, p. 119.  G,  I stand for g, h.  X represents tau. They do not explicitly mention the requirement  ( G  o.  I
)  =/=  (  _I  |  `  B ). (Contributed by NM, 22-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( G  o.  I )  =/=  (  _I  |`  B ) ) )  ->  ( [_ ( G  o.  I
 )  /  g ]_ X `  P )  .<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G ) ) )
 
Theoremcdlemk46 36236* Part of proof of Lemma K of [Crawley] p. 118. Line 38 (last line), p. 119.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 22-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( G  o.  I )  =/=  (  _I  |`  B ) ) )  ->  ( [_ ( G  o.  I
 )  /  g ]_ X `  P )  .<_  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I ) ) )
 
Theoremcdlemk47 36237* Part of proof of Lemma K of [Crawley] p. 118. Line 2, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 22-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( R `  G )  =/=  ( R `  I ) ) )  ->  ( [_ ( G  o.  I
 )  /  g ]_ X `  P )  =  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I ) ) 
 ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G ) ) ) )
 
Theoremcdlemk48 36238* Part of proof of Lemma K of [Crawley] p. 118. Line 4, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 22-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
 ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `
  P )  .<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  /  g ]_ X ) ) )
 
Theoremcdlemk49 36239* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 23-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
 ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `
  P )  .<_  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  /  g ]_ X ) ) )
 
Theoremcdlemk50 36240* Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120.  G,  I stand for g, h.  X represents tau. TODO: Combine into cdlemk52 36242? (Contributed by NM, 23-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
 ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `
  P )  .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `
  [_ I  /  g ]_ X ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `
  [_ G  /  g ]_ X ) ) ) )
 
Theoremcdlemk51 36241* Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120.  G,  I stand for g, h.  X represents tau. TODO: Combine into cdlemk52 36242? (Contributed by NM, 23-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
 ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `
  [_ I  /  g ]_ X ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `
  [_ G  /  g ]_ X ) ) ) 
 .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I ) ) 
 ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G ) ) ) )
 
Theoremcdlemk52 36242* Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 23-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( R `  G )  =/=  ( R `  I ) ) )  ->  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `
  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) )
 
Theoremcdlemk53a 36243* Lemma for cdlemk53 36245. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) 
 /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( R `  G )  =/=  ( R `  I ) ) )  ->  [_ ( G  o.  I )  /  g ]_ X  =  (
 [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
 
Theoremcdlemk53b 36244* Lemma for cdlemk53 36245. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) 
 /\  ( R `  G )  =/=  ( R `  I ) ) )  ->  [_ ( G  o.  I )  /  g ]_ X  =  (
 [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
 
Theoremcdlemk53 36245* Part of proof of Lemma K of [Crawley] p. 118. Line 7, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( I  e.  T  /\  ( R `  G )  =/=  ( R `  I
 ) ) )  ->  [_ ( G  o.  I
 )  /  g ]_ X  =  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
 
Theoremcdlemk54 36246* Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `  G )  =  ( R `  I ) )  /\  j  e.  T  /\  ( j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G )  /\  ( R `
  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I )  /  g ]_ X  o.  [_ j  /  g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X ) )
 
Theoremcdlemk55a 36247* Lemma for cdlemk55 36249. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `  G )  =  ( R `  I ) )  /\  j  e.  T  /\  ( j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G )  /\  ( R `
  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  I
 )  /  g ]_ X  =  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
 
Theoremcdlemk55b 36248* Lemma for cdlemk55 36249. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( I  e.  T  /\  ( R `  G )  =  ( R `  I
 ) ) )  ->  [_ ( G  o.  I
 )  /  g ]_ X  =  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
 
Theoremcdlemk55 36249* Part of proof of Lemma K of [Crawley] p. 118. Line 11, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  I  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  [_ ( G  o.  I )  /  g ]_ X  =  (
 [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
 
TheoremcdlemkyyN 36250* Part of proof of Lemma K of [Crawley] p. 118. TODO: clean up  ( b Y G ) stuff. (Contributed by NM, 21-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `
  P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )   &    |-  V  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `
  P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
 ( S `  d
 ) `  P )  .\/  ( R `  (
 e  o.  `' d
 ) ) ) ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) 
 /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  (
 b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) ) ) ) 
 ->  ( [_ G  /  g ]_ X `  P )  =  ( (
 b V G ) `
  P ) )
 
Theoremcdlemk43N 36251* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 31-Jul-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  N  e.  T  /\  F  =/=  N ) 
 /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  (
 b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  G ) ) ) ) 
 ->  ( ( U `  G ) `  P )  =  [_ G  /  g ]_ Y )
 
Theoremcdlemk35u 36252* Substitution version of cdlemk35 36200. (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  G )  e.  T )
 
Theoremcdlemk55u1 36253* Lemma for cdlemk55u 36254. (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  ( ( ( R `
  F )  =  ( R `  N )  /\  F  =/=  N )  /\  G  e.  T  /\  I  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( G  o.  I ) )  =  ( ( U `  G )  o.  ( U `  I ) ) )
 
Theoremcdlemk55u 36254* Part of proof of Lemma K of [Crawley] p. 118. Line 11, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  ( ( R `  F )  =  ( R `  N )  /\  G  e.  T  /\  I  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( G  o.  I
 ) )  =  ( ( U `  G )  o.  ( U `  I ) ) )
 
Theoremcdlemk39u1 36255* Lemma for cdlemk39u 36256. (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  ( ( R `  F )  =  ( R `  N )  /\  F  =/=  N  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 ->  ( R `  ( U `  G ) ) 
 .<_  ( R `  G ) )
 
Theoremcdlemk39u 36256* Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. Trace-preserving property of the value of tau, represented by  ( U `  G ). (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  ( ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( U `  G ) )  .<_  ( R `
  G ) )
 
Theoremcdlemk19u1 36257* cdlemk19 36157 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  F  =/=  N  /\  N  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  F ) `  P )  =  ( N `  P ) )
 
Theoremcdlemk19u 36258* Part of Lemma K of [Crawley] p. 118. Line 12, p. 120, "f (exponent) tau = k". We represent f, k, tau with  F,  N,  U. (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  F )  =  N )
 
Theoremcdlemk56 36259* Part of Lemma K of [Crawley] p. 118. Line 11, p. 120, "tau is in Delta" i.e.  U is a trace-preserving endormorphism. (Contributed by NM, 31-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  P )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X )
 )   &    |-  E  =  ( (
 TEndo `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 ->  U  e.  E )
 
Theoremcdlemk19w 36260* Use a fixed element to eliminate  P in cdlemk19u 36258. (Contributed by NM, 1-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  ._|_  =  ( oc `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  P  =  (  ._|_  `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) ) 
 ./\  ( Z  .\/  ( R `  ( g  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  g
 ) )  ->  (
 z `  P )  =  Y ) )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N ) )  ->  ( U `  F )  =  N )
 
Theoremcdlemk56w 36261* Use a fixed element to eliminate  P in cdlemk56 36259. (Contributed by NM, 1-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  ._|_  =  ( oc `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  P  =  (  ._|_  `  W )   &    |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `
  ( b  o.  `' F ) ) ) )   &    |-  Y  =  ( ( P  .\/  ( R `  g ) ) 
 ./\  ( Z  .\/  ( R `  ( g  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `
  b )  =/=  ( R `  g
 ) )  ->  (
 z `  P )  =  Y ) )   &    |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N ) )  ->  ( U  e.  E  /\  ( U `  F )  =  N )
 )
 
Theoremcdlemk 36262* Lemma K of [Crawley] p. 118. Final result, lines 11 and 12 on p. 120: given two translations f and k with the same trace, there exists a trace-preserving endomorphism tau whose value at f is k. We use  F,  N, and  u to represent f, k, and tau. (Contributed by NM, 1-Aug-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T ) 
 /\  ( R `  F )  =  ( R `  N ) ) 
 ->  E. u  e.  E  ( u `  F )  =  N )
 
Theoremtendoex 36263* Generalization of Lemma K of [Crawley] p. 118, cdlemk 36262. TODO: can this be used to shorten uses of cdlemk 36262? (Contributed by NM, 15-Oct-2013.)
 |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T ) 
 /\  ( R `  N )  .<_  ( R `
  F ) ) 
 ->  E. u  e.  E  ( u `  F )  =  N )
 
Theoremcdleml1N 36264 Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B ) 
 /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( U `  f
 ) )  =  ( R `  ( V `
  f ) ) )
 
Theoremcdleml2N 36265* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B ) 
 /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  E. s  e.  E  ( s `  ( U `  f ) )  =  ( V `
  f ) )
 
Theoremcdleml3N 36266* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. s  e.  E  ( s  o.  U )  =  V )
 
Theoremcdleml4N 36267* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
 )  ->  E. s  e.  E  ( s  o.  U )  =  V )
 
Theoremcdleml5N 36268* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  ->  E. s  e.  E  ( s  o.  U )  =  V )
 
Theoremcdleml6 36269* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Q  =  ( ( oc `  K ) `  W )   &    |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( ( h `  Q )  .\/  ( R `
  ( b  o.  `' ( s `  h ) ) ) ) )   &    |-  Y  =  ( ( Q  .\/  ( R `  g ) ) 
 ./\  ( Z  .\/  ( R `  ( g  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `
  b )  =/=  ( R `  g
 ) )  ->  (
 z `  Q )  =  Y ) )   &    |-  U  =  ( g  e.  T  |->  if ( ( s `  h )  =  h ,  g ,  X ) )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  ( U  e.  E  /\  ( U `  (
 s `  h )
 )  =  h ) )
 
Theoremcdleml7 36270* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Q  =  ( ( oc `  K ) `  W )   &    |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( ( h `  Q )  .\/  ( R `
  ( b  o.  `' ( s `  h ) ) ) ) )   &    |-  Y  =  ( ( Q  .\/  ( R `  g ) ) 
 ./\  ( Z  .\/  ( R `  ( g  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `
  b )  =/=  ( R `  g
 ) )  ->  (
 z `  Q )  =  Y ) )   &    |-  U  =  ( g  e.  T  |->  if ( ( s `  h )  =  h ,  g ,  X ) )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  ( ( U  o.  s ) `  h )  =  ( (  _I  |`  T ) `  h ) )
 
Theoremcdleml8 36271* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Q  =  ( ( oc `  K ) `  W )   &    |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( ( h `  Q )  .\/  ( R `
  ( b  o.  `' ( s `  h ) ) ) ) )   &    |-  Y  =  ( ( Q  .\/  ( R `  g ) ) 
 ./\  ( Z  .\/  ( R `  ( g  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `
  b )  =/=  ( R `  g
 ) )  ->  (
 z `  Q )  =  Y ) )   &    |-  U  =  ( g  e.  T  |->  if ( ( s `  h )  =  h ,  g ,  X ) )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  ( U  o.  s
 )  =  (  _I  |`  T ) )
 
Theoremcdleml9 36272* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Q  =  ( ( oc `  K ) `  W )   &    |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( ( h `  Q )  .\/  ( R `
  ( b  o.  `' ( s `  h ) ) ) ) )   &    |-  Y  =  ( ( Q  .\/  ( R `  g ) ) 
 ./\  ( Z  .\/  ( R `  ( g  o.  `' b ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `
  b )  =/=  ( R `  g
 ) )  ->  (
 z `  Q )  =  Y ) )   &    |-  U  =  ( g  e.  T  |->  if ( ( s `  h )  =  h ,  g ,  X ) )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  U  =/=  .0.  )
 
Theoremdva1dim 36273* Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 
F whose trace is  P rather than  P itself;  F exists by cdlemf 35851. 
E is the division ring base by erngdv 36281, and  s `  F is the scalar product by dvavsca 36305. 
F must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
 |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  {
 g  e.  T  |  ( R `  g ) 
 .<_  ( R `  F ) } )
 
Theoremdvhb1dimN 36274* Two expressions for the 1-dimensional subspaces of vector space H, in the isomorphism B case where the 2nd vector component is zero. (Contributed by NM, 23-Feb-2014.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .0.  =  ( h  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  ->  { g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `  F ) ,  .0.  >. }  =  { g  e.  ( T  X.  E )  |  ( ( R `  ( 1st `  g )
 )  .<_  ( R `  F )  /\  ( 2nd `  g )  =  .0.  ) } )
 
Theoremerng1lem 36275 Value of the endomorphism division ring unit. (Contributed by NM, 12-Oct-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  (
 ( K  e.  HL  /\  W  e.  H ) 
 ->  D  e.  Ring )   =>    |-  (
 ( K  e.  HL  /\  W  e.  H ) 
 ->  ( 1r `  D )  =  (  _I  |`  T ) )
 
Theoremerngdvlem1 36276* Lemma for eringring 36280. (Contributed by NM, 4-Aug-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
 b `  f )
 ) ) )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
 
Theoremerngdvlem2N 36277* Lemma for eringring 36280. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
 b `  f )
 ) ) )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Abel )
 
Theoremerngdvlem3 36278* Lemma for eringring 36280. (Contributed by NM, 6-Aug-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
 b `  f )
 ) ) )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   &    |-  .+  =  (
 a  e.  E ,  b  e.  E  |->  ( a  o.  b ) )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
 
Theoremerngdvlem4 36279* Lemma for erngdv 36281. (Contributed by NM, 11-Aug-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
 b `  f )
 ) ) )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   &    |-  .+  =  (
 a  e.  E ,  b  e.  E  |->  ( a  o.  b ) )   &    |-  .\/ 
 =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Q  =  ( ( oc `  K ) `  W )   &    |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( ( h `  Q )  .\/  ( R `  ( b  o.  `' ( s `
  h ) ) ) ) )   &    |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  Q )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if (
 ( s `  h )  =  h ,  g ,  X )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) ) )  ->  D  e. 
 DivRing )
 
Theoremeringring 36280 An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRing `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
 
Theoremerngdv 36281 An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRing `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e. 
 DivRing )
 
Theoremerng0g 36282* The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |- 
 .0.  =  ( 0g `  D )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  =  O )
 
Theoremerng1r 36283 The division ring unit of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  .1.  =  ( 1r `  D )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .1.  =  (  _I  |`  T ) )
 
Theoremerngdvlem1-rN 36284* Lemma for eringring 36280. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRingR `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
 
Theoremerngdvlem2-rN 36285* Lemma for eringring 36280. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRingR `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Abel )
 
Theoremerngdvlem3-rN 36286* Lemma for eringring 36280. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRingR `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   &    |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a ) )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
 
Theoremerngdvlem4-rN 36287* Lemma for erngdv 36281. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRingR `  K ) `  W )   &    |-  B  =  ( Base `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' (
 a `  f )
 ) )   &    |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a ) )   &    |-  .\/ 
 =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  Q  =  ( ( oc `  K ) `  W )   &    |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( ( h `  Q )  .\/  ( R `  ( b  o.  `' ( s `
  h ) ) ) ) )   &    |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
 g  o.  `' b
 ) ) ) )   &    |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B ) 
 /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  ->  ( z `  Q )  =  Y )
 )   &    |-  U  =  ( g  e.  T  |->  if (
 ( s `  h )  =  h ,  g ,  X )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) ) )  ->  D  e. 
 DivRing )
 
Theoremerngring-rN 36288 An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRingR `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
 
Theoremerngdv-rN 36289 An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRingR `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
 
Syntaxcdveca 36290 Extend class notation with constructed vector space A.
 class  DVecA
 
Definitiondf-dveca 36291* Define constructed partial vector space A. (Contributed by NM, 8-Oct-2013.)
 |-  DVecA  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  k
 ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
 ) `  w ) ,  g  e.  (
 ( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
 >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  k
 ) `  w ) >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  (
 ( TEndo `  k ) `  w ) ,  f  e.  ( ( LTrn `  k
 ) `  w )  |->  ( s `  f
 ) ) >. } )
 ) )
 
Theoremdvafset 36292* The constructed partial vector space A for a lattice  K. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  V  ->  (
 DVecA `  K )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. (
 +g  `  ndx ) ,  ( f  e.  (
 ( LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w )  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `
  K ) `  w ) >. }  u.  {
 <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  f  e.  ( (
 LTrn `  K ) `  w )  |->  ( s `
  f ) )
 >. } ) ) )
 
Theoremdvaset 36293* The constructed partial vector space A for a lattice  K. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   =>    |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( { <. ( Base ` 
 ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. , 
 <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. } ) )
 
Theoremdvasca 36294 The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom  W). (Contributed by NM, 22-Jun-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( EDRing `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   &    |-  F  =  (Scalar `  U )   =>    |-  (
 ( K  e.  X  /\  W  e.  H ) 
 ->  F  =  D )
 
Theoremdvabase 36295 The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom  W). (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  C  =  ( Base `  F )   =>    |-  (
 ( K  e.  X  /\  W  e.  H ) 
 ->  C  =  E )
 
Theoremdvafplusg 36296* Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .+  =  ( +g  `  F )   =>    |-  (
 ( K  e.  V  /\  W  e.  H ) 
 ->  .+  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
  f )  o.  ( t `  f
 ) ) ) ) )
 
Theoremdvaplusg 36297* Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .+  =  ( +g  `  F )   =>    |-  (
 ( ( K  e.  V  /\  W  e.  H )  /\  ( R  e.  E  /\  S  e.  E ) )  ->  ( R 
 .+  S )  =  ( f  e.  T  |->  ( ( R `  f )  o.  ( S `  f ) ) ) )
 
Theoremdvaplusgv 36298 Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .+  =  ( +g  `  F )   =>    |-  (
 ( ( K  e.  V  /\  W  e.  H )  /\  ( R  e.  E  /\  S  e.  E  /\  G  e.  T ) )  ->  ( ( R  .+  S ) `  G )  =  (
 ( R `  G )  o.  ( S `  G ) ) )
 
Theoremdvafmulr 36299* Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .x.  =  ( .r `  F )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  .x.  =  (
 s  e.  E ,  t  e.  E  |->  ( s  o.  t ) ) )
 
Theoremdvamulr 36300 Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecA `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .x.  =  ( .r `  F )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( R  e.  E  /\  S  e.  E )
 )  ->  ( R  .x.  S )  =  ( R  o.  S ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >