MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrval Structured version   Visualization version   Unicode version

Theorem dvdsrval 18645
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsr.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsrval  |-  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
Distinct variable groups:    x, y,  .||    x, z, B, y    x, R, y, z    x,  .x. , y, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . 3  |-  .||  =  (
||r `  R )
2 fveq2 6191 . . . . . . . . 9  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 dvdsr.1 . . . . . . . . 9  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2674 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  B )
54eleq2d 2687 . . . . . . 7  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  B ) )
64rexeqdv 3145 . . . . . . 7  |-  ( r  =  R  ->  ( E. z  e.  ( Base `  r ) ( z ( .r `  r ) x )  =  y  <->  E. z  e.  B  ( z
( .r `  r
) x )  =  y ) )
75, 6anbi12d 747 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  E. z  e.  (
Base `  r )
( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  B  /\  E. z  e.  B  ( z ( .r
`  r ) x )  =  y ) ) )
8 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
9 dvdsr.3 . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
108, 9syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1110oveqd 6667 . . . . . . . . 9  |-  ( r  =  R  ->  (
z ( .r `  r ) x )  =  ( z  .x.  x ) )
1211eqeq1d 2624 . . . . . . . 8  |-  ( r  =  R  ->  (
( z ( .r
`  r ) x )  =  y  <->  ( z  .x.  x )  =  y ) )
1312rexbidv 3052 . . . . . . 7  |-  ( r  =  R  ->  ( E. z  e.  B  ( z ( .r
`  r ) x )  =  y  <->  E. z  e.  B  ( z  .x.  x )  =  y ) )
1413anbi2d 740 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  B  /\  E. z  e.  B  ( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  B  /\  E. z  e.  B  ( z  .x.  x
)  =  y ) ) )
157, 14bitrd 268 . . . . 5  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  E. z  e.  (
Base `  r )
( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  B  /\  E. z  e.  B  ( z  .x.  x
)  =  y ) ) )
1615opabbidv 4716 . . . 4  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  r )  /\  E. z  e.  ( Base `  r ) ( z ( .r `  r
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
17 df-dvdsr 18641 . . . 4  |-  ||r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  r
)  /\  E. z  e.  ( Base `  r
) ( z ( .r `  r ) x )  =  y ) } )
18 fvex 6201 . . . . . 6  |-  ( Base `  R )  e.  _V
193, 18eqeltri 2697 . . . . 5  |-  B  e. 
_V
20 eqcom 2629 . . . . . . . . 9  |-  ( ( z  .x.  x )  =  y  <->  y  =  ( z  .x.  x
) )
2120rexbii 3041 . . . . . . . 8  |-  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  y  =  ( z  .x.  x
) )
2221abbii 2739 . . . . . . 7  |-  { y  |  E. z  e.  B  ( z  .x.  x )  =  y }  =  { y  |  E. z  e.  B  y  =  ( z  .x.  x ) }
2319abrexex 7141 . . . . . . 7  |-  { y  |  E. z  e.  B  y  =  ( z  .x.  x ) }  e.  _V
2422, 23eqeltri 2697 . . . . . 6  |-  { y  |  E. z  e.  B  ( z  .x.  x )  =  y }  e.  _V
2524a1i 11 . . . . 5  |-  ( x  e.  B  ->  { y  |  E. z  e.  B  ( z  .x.  x )  =  y }  e.  _V )
2619, 25opabex3 7146 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  e.  _V
2716, 17, 26fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  ( ||r `  R )  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
281, 27syl5eq 2668 . 2  |-  ( R  e.  _V  ->  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
29 fvprc 6185 . . . 4  |-  ( -.  R  e.  _V  ->  (
||r `  R )  =  (/) )
301, 29syl5eq 2668 . . 3  |-  ( -.  R  e.  _V  ->  .||  =  (/) )
31 opabn0 5006 . . . . 5  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =/=  (/)  <->  E. x E. y ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) )
32 n0i 3920 . . . . . . . 8  |-  ( x  e.  B  ->  -.  B  =  (/) )
33 fvprc 6185 . . . . . . . . 9  |-  ( -.  R  e.  _V  ->  (
Base `  R )  =  (/) )
343, 33syl5eq 2668 . . . . . . . 8  |-  ( -.  R  e.  _V  ->  B  =  (/) )
3532, 34nsyl2 142 . . . . . . 7  |-  ( x  e.  B  ->  R  e.  _V )
3635adantr 481 . . . . . 6  |-  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  ->  R  e.  _V )
3736exlimivv 1860 . . . . 5  |-  ( E. x E. y ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  ->  R  e.  _V )
3831, 37sylbi 207 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =/=  (/)  ->  R  e.  _V )
3938necon1bi 2822 . . 3  |-  ( -.  R  e.  _V  ->  {
<. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  (/) )
4030, 39eqtr4d 2659 . 2  |-  ( -.  R  e.  _V  ->  .||  =  { <. x ,  y
>.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
4128, 40pm2.61i 176 1  |-  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   _Vcvv 3200   (/)c0 3915   {copab 4712   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   ||rcdsr 18638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-dvdsr 18641
This theorem is referenced by:  dvdsr  18646  dvdsrpropd  18696  dvdsrzring  19831
  Copyright terms: Public domain W3C validator