Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecinn0 Structured version   Visualization version   Unicode version

Theorem ecinn0 34118
Description: Two ways of saying that the coset of  A and the coset of  B have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.)
Assertion
Ref Expression
ecinn0  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( [ A ] R  i^i  [ B ] R )  =/=  (/)  <->  E. x
( A R x  /\  B R x ) ) )
Distinct variable groups:    x, A    x, B    x, R    x, V    x, W

Proof of Theorem ecinn0
StepHypRef Expression
1 ecin0 34117 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( [ A ] R  i^i  [ B ] R )  =  (/)  <->  A. x ( A R x  ->  -.  B R x ) ) )
21necon3abid 2830 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( [ A ] R  i^i  [ B ] R )  =/=  (/)  <->  -.  A. x
( A R x  ->  -.  B R x ) ) )
3 notnotb 304 . . . . 5  |-  ( B R x  <->  -.  -.  B R x )
43anbi2i 730 . . . 4  |-  ( ( A R x  /\  B R x )  <->  ( A R x  /\  -.  -.  B R x ) )
54exbii 1774 . . 3  |-  ( E. x ( A R x  /\  B R x )  <->  E. x
( A R x  /\  -.  -.  B R x ) )
6 exanali 1786 . . 3  |-  ( E. x ( A R x  /\  -.  -.  B R x )  <->  -.  A. x
( A R x  ->  -.  B R x ) )
75, 6bitri 264 . 2  |-  ( E. x ( A R x  /\  B R x )  <->  -.  A. x
( A R x  ->  -.  B R x ) )
82, 7syl6bbr 278 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( [ A ] R  i^i  [ B ] R )  =/=  (/)  <->  E. x
( A R x  /\  B R x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990    =/= wne 2794    i^i cin 3573   (/)c0 3915   class class class wbr 4653   [cec 7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator