MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgrelexlema Structured version   Visualization version   Unicode version

Theorem efgrelexlema 18162
Description: If two words  A ,  B are related under the free group equivalence, then there exist two extension sequences  a ,  b such that  a ends at  A,  b ends at  B, and  a and  B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgrelexlem.1  |-  L  =  { <. i ,  j
>.  |  E. c  e.  ( `' S " { i } ) E. d  e.  ( `' S " { j } ) ( c `
 0 )  =  ( d `  0
) }
Assertion
Ref Expression
efgrelexlema  |-  ( A L B  <->  E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { B } ) ( a `
 0 )  =  ( b `  0
) )
Distinct variable groups:    a, b,
c, d, i, j, A    y, a, z, b    L, a, b    n, c, t, v, w, y, z    m, a, n, t, v, w, x, M, b, c, i, j    k, a, T, b, c, i, j, m, t, x    W, a, b, c    k, d, m, n, t, v, w, x, y, z, W, i, j    .~ , a, b, c, d, i, j, m, t, x, y, z    B, a, b, c, d, i, j    S, a, b, c, d, i, j    I,
a, b, c, i, j, m, n, t, v, w, x, y, z    D, a, b, c, d, i, j, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n, d)    I( k, d)    L( x, y, z, w, v, t, i, j, k, m, n, c, d)    M( y, z, k, d)

Proof of Theorem efgrelexlema
StepHypRef Expression
1 efgrelexlem.1 . . 3  |-  L  =  { <. i ,  j
>.  |  E. c  e.  ( `' S " { i } ) E. d  e.  ( `' S " { j } ) ( c `
 0 )  =  ( d `  0
) }
21bropaex12 5192 . 2  |-  ( A L B  ->  ( A  e.  _V  /\  B  e.  _V ) )
3 n0i 3920 . . . . . 6  |-  ( a  e.  ( `' S " { A } )  ->  -.  ( `' S " { A }
)  =  (/) )
4 snprc 4253 . . . . . . . 8  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
5 imaeq2 5462 . . . . . . . 8  |-  ( { A }  =  (/)  ->  ( `' S " { A } )  =  ( `' S " (/) ) )
64, 5sylbi 207 . . . . . . 7  |-  ( -.  A  e.  _V  ->  ( `' S " { A } )  =  ( `' S " (/) ) )
7 ima0 5481 . . . . . . 7  |-  ( `' S " (/) )  =  (/)
86, 7syl6eq 2672 . . . . . 6  |-  ( -.  A  e.  _V  ->  ( `' S " { A } )  =  (/) )
93, 8nsyl2 142 . . . . 5  |-  ( a  e.  ( `' S " { A } )  ->  A  e.  _V )
10 n0i 3920 . . . . . 6  |-  ( b  e.  ( `' S " { B } )  ->  -.  ( `' S " { B }
)  =  (/) )
11 snprc 4253 . . . . . . . 8  |-  ( -.  B  e.  _V  <->  { B }  =  (/) )
12 imaeq2 5462 . . . . . . . 8  |-  ( { B }  =  (/)  ->  ( `' S " { B } )  =  ( `' S " (/) ) )
1311, 12sylbi 207 . . . . . . 7  |-  ( -.  B  e.  _V  ->  ( `' S " { B } )  =  ( `' S " (/) ) )
1413, 7syl6eq 2672 . . . . . 6  |-  ( -.  B  e.  _V  ->  ( `' S " { B } )  =  (/) )
1510, 14nsyl2 142 . . . . 5  |-  ( b  e.  ( `' S " { B } )  ->  B  e.  _V )
169, 15anim12i 590 . . . 4  |-  ( ( a  e.  ( `' S " { A } )  /\  b  e.  ( `' S " { B } ) )  ->  ( A  e. 
_V  /\  B  e.  _V ) )
1716a1d 25 . . 3  |-  ( ( a  e.  ( `' S " { A } )  /\  b  e.  ( `' S " { B } ) )  ->  ( ( a `
 0 )  =  ( b `  0
)  ->  ( A  e.  _V  /\  B  e. 
_V ) ) )
1817rexlimivv 3036 . 2  |-  ( E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { B } ) ( a `  0 )  =  ( b ` 
0 )  ->  ( A  e.  _V  /\  B  e.  _V ) )
19 fveq1 6190 . . . . . 6  |-  ( c  =  a  ->  (
c `  0 )  =  ( a ` 
0 ) )
2019eqeq1d 2624 . . . . 5  |-  ( c  =  a  ->  (
( c `  0
)  =  ( d `
 0 )  <->  ( a `  0 )  =  ( d `  0
) ) )
21 fveq1 6190 . . . . . 6  |-  ( d  =  b  ->  (
d `  0 )  =  ( b ` 
0 ) )
2221eqeq2d 2632 . . . . 5  |-  ( d  =  b  ->  (
( a `  0
)  =  ( d `
 0 )  <->  ( a `  0 )  =  ( b `  0
) ) )
2320, 22cbvrex2v 3180 . . . 4  |-  ( E. c  e.  ( `' S " { i } ) E. d  e.  ( `' S " { j } ) ( c `  0
)  =  ( d `
 0 )  <->  E. a  e.  ( `' S " { i } ) E. b  e.  ( `' S " { j } ) ( a `
 0 )  =  ( b `  0
) )
24 sneq 4187 . . . . . 6  |-  ( i  =  A  ->  { i }  =  { A } )
2524imaeq2d 5466 . . . . 5  |-  ( i  =  A  ->  ( `' S " { i } )  =  ( `' S " { A } ) )
2625rexeqdv 3145 . . . 4  |-  ( i  =  A  ->  ( E. a  e.  ( `' S " { i } ) E. b  e.  ( `' S " { j } ) ( a `  0
)  =  ( b `
 0 )  <->  E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { j } ) ( a `
 0 )  =  ( b `  0
) ) )
2723, 26syl5bb 272 . . 3  |-  ( i  =  A  ->  ( E. c  e.  ( `' S " { i } ) E. d  e.  ( `' S " { j } ) ( c `  0
)  =  ( d `
 0 )  <->  E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { j } ) ( a `
 0 )  =  ( b `  0
) ) )
28 sneq 4187 . . . . . 6  |-  ( j  =  B  ->  { j }  =  { B } )
2928imaeq2d 5466 . . . . 5  |-  ( j  =  B  ->  ( `' S " { j } )  =  ( `' S " { B } ) )
3029rexeqdv 3145 . . . 4  |-  ( j  =  B  ->  ( E. b  e.  ( `' S " { j } ) ( a `
 0 )  =  ( b `  0
)  <->  E. b  e.  ( `' S " { B } ) ( a `
 0 )  =  ( b `  0
) ) )
3130rexbidv 3052 . . 3  |-  ( j  =  B  ->  ( E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { j } ) ( a `  0
)  =  ( b `
 0 )  <->  E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { B } ) ( a `
 0 )  =  ( b `  0
) ) )
3227, 31, 1brabg 4994 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A L B  <->  E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { B } ) ( a `  0 )  =  ( b ` 
0 ) ) )
332, 18, 32pm5.21nii 368 1  |-  ( A L B  <->  E. a  e.  ( `' S " { A } ) E. b  e.  ( `' S " { B } ) ( a `
 0 )  =  ( b `  0
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896
This theorem is referenced by:  efgrelexlemb  18163  efgrelex  18164
  Copyright terms: Public domain W3C validator