| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgrelexlema | Structured version Visualization version Unicode version | ||
| Description: If two words |
| Ref | Expression |
|---|---|
| efgval.w |
|
| efgval.r |
|
| efgval2.m |
|
| efgval2.t |
|
| efgred.d |
|
| efgred.s |
|
| efgrelexlem.1 |
|
| Ref | Expression |
|---|---|
| efgrelexlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgrelexlem.1 |
. . 3
| |
| 2 | 1 | bropaex12 5192 |
. 2
|
| 3 | n0i 3920 |
. . . . . 6
| |
| 4 | snprc 4253 |
. . . . . . . 8
| |
| 5 | imaeq2 5462 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylbi 207 |
. . . . . . 7
|
| 7 | ima0 5481 |
. . . . . . 7
| |
| 8 | 6, 7 | syl6eq 2672 |
. . . . . 6
|
| 9 | 3, 8 | nsyl2 142 |
. . . . 5
|
| 10 | n0i 3920 |
. . . . . 6
| |
| 11 | snprc 4253 |
. . . . . . . 8
| |
| 12 | imaeq2 5462 |
. . . . . . . 8
| |
| 13 | 11, 12 | sylbi 207 |
. . . . . . 7
|
| 14 | 13, 7 | syl6eq 2672 |
. . . . . 6
|
| 15 | 10, 14 | nsyl2 142 |
. . . . 5
|
| 16 | 9, 15 | anim12i 590 |
. . . 4
|
| 17 | 16 | a1d 25 |
. . 3
|
| 18 | 17 | rexlimivv 3036 |
. 2
|
| 19 | fveq1 6190 |
. . . . . 6
| |
| 20 | 19 | eqeq1d 2624 |
. . . . 5
|
| 21 | fveq1 6190 |
. . . . . 6
| |
| 22 | 21 | eqeq2d 2632 |
. . . . 5
|
| 23 | 20, 22 | cbvrex2v 3180 |
. . . 4
|
| 24 | sneq 4187 |
. . . . . 6
| |
| 25 | 24 | imaeq2d 5466 |
. . . . 5
|
| 26 | 25 | rexeqdv 3145 |
. . . 4
|
| 27 | 23, 26 | syl5bb 272 |
. . 3
|
| 28 | sneq 4187 |
. . . . . 6
| |
| 29 | 28 | imaeq2d 5466 |
. . . . 5
|
| 30 | 29 | rexeqdv 3145 |
. . . 4
|
| 31 | 30 | rexbidv 3052 |
. . 3
|
| 32 | 27, 31, 1 | brabg 4994 |
. 2
|
| 33 | 2, 18, 32 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: efgrelexlemb 18163 efgrelex 18164 |
| Copyright terms: Public domain | W3C validator |