MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgrelexlemb Structured version   Visualization version   Unicode version

Theorem efgrelexlemb 18163
Description: If two words  A ,  B are related under the free group equivalence, then there exist two extension sequences  a ,  b such that  a ends at  A,  b ends at  B, and  a and  B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgrelexlem.1  |-  L  =  { <. i ,  j
>.  |  E. c  e.  ( `' S " { i } ) E. d  e.  ( `' S " { j } ) ( c `
 0 )  =  ( d `  0
) }
Assertion
Ref Expression
efgrelexlemb  |-  .~  C_  L
Distinct variable groups:    c, d,
i, j    y, z    n, c, t, v, w, y, z, m, x    M, c    i, m, n, t, v, w, x, M, j    k, c, T, i, j, m, t, x    W, c   
k, d, m, n, t, v, w, x, y, z, W, i, j    .~ , c, d, i, j, m, t, x, y, z    S, c, d, i, j    I,
c, i, j, m, n, t, v, w, x, y, z    D, c, d, i, j, m, t
Allowed substitution hints:    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y,
z, w, v, n, d)    I( k, d)    L( x, y, z, w, v, t, i, j, k, m, n, c, d)    M( y, z, k, d)

Proof of Theorem efgrelexlemb
Dummy variables  a 
b  f  g  h  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . 3  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . 3  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . 3  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
51, 2, 3, 4efgval2 18137 . 2  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }
6 efgrelexlem.1 . . . . . . . 8  |-  L  =  { <. i ,  j
>.  |  E. c  e.  ( `' S " { i } ) E. d  e.  ( `' S " { j } ) ( c `
 0 )  =  ( d `  0
) }
76relopabi 5245 . . . . . . 7  |-  Rel  L
87a1i 11 . . . . . 6  |-  ( T. 
->  Rel  L )
9 simpr 477 . . . . . . 7  |-  ( ( T.  /\  f L g )  ->  f L g )
10 eqcom 2629 . . . . . . . . . 10  |-  ( ( a `  0 )  =  ( b ` 
0 )  <->  ( b `  0 )  =  ( a `  0
) )
11102rexbii 3042 . . . . . . . . 9  |-  ( E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { g } ) ( a `  0
)  =  ( b `
 0 )  <->  E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { g } ) ( b `
 0 )  =  ( a `  0
) )
12 rexcom 3099 . . . . . . . . 9  |-  ( E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { g } ) ( b `  0
)  =  ( a `
 0 )  <->  E. b  e.  ( `' S " { g } ) E. a  e.  ( `' S " { f } ) ( b `
 0 )  =  ( a `  0
) )
1311, 12bitri 264 . . . . . . . 8  |-  ( E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { g } ) ( a `  0
)  =  ( b `
 0 )  <->  E. b  e.  ( `' S " { g } ) E. a  e.  ( `' S " { f } ) ( b `
 0 )  =  ( a `  0
) )
14 efgred.d . . . . . . . . 9  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
15 efgred.s . . . . . . . . 9  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
161, 2, 3, 4, 14, 15, 6efgrelexlema 18162 . . . . . . . 8  |-  ( f L g  <->  E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { g } ) ( a `
 0 )  =  ( b `  0
) )
171, 2, 3, 4, 14, 15, 6efgrelexlema 18162 . . . . . . . 8  |-  ( g L f  <->  E. b  e.  ( `' S " { g } ) E. a  e.  ( `' S " { f } ) ( b `
 0 )  =  ( a `  0
) )
1813, 16, 173bitr4i 292 . . . . . . 7  |-  ( f L g  <->  g L
f )
199, 18sylib 208 . . . . . 6  |-  ( ( T.  /\  f L g )  ->  g L f )
201, 2, 3, 4, 14, 15, 6efgrelexlema 18162 . . . . . . . . 9  |-  ( g L h  <->  E. r  e.  ( `' S " { g } ) E. s  e.  ( `' S " { h } ) ( r `
 0 )  =  ( s `  0
) )
21 reeanv 3107 . . . . . . . . . 10  |-  ( E. a  e.  ( `' S " { f } ) E. r  e.  ( `' S " { g } ) ( E. b  e.  ( `' S " { g } ) ( a `  0
)  =  ( b `
 0 )  /\  E. s  e.  ( `' S " { h } ) ( r `
 0 )  =  ( s `  0
) )  <->  ( E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { g } ) ( a `  0
)  =  ( b `
 0 )  /\  E. r  e.  ( `' S " { g } ) E. s  e.  ( `' S " { h } ) ( r `  0
)  =  ( s `
 0 ) ) )
221, 2, 3, 4, 14, 15efgsfo 18152 . . . . . . . . . . . . . . . . . . . 20  |-  S : dom  S -onto-> W
23 fofn 6117 . . . . . . . . . . . . . . . . . . . 20  |-  ( S : dom  S -onto-> W  ->  S  Fn  dom  S
)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  S  Fn  dom  S
25 fniniseg 6338 . . . . . . . . . . . . . . . . . . 19  |-  ( S  Fn  dom  S  -> 
( r  e.  ( `' S " { g } )  <->  ( r  e.  dom  S  /\  ( S `  r )  =  g ) ) )
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  ( `' S " { g } )  <-> 
( r  e.  dom  S  /\  ( S `  r )  =  g ) )
27 fniniseg 6338 . . . . . . . . . . . . . . . . . . 19  |-  ( S  Fn  dom  S  -> 
( b  e.  ( `' S " { g } )  <->  ( b  e.  dom  S  /\  ( S `  b )  =  g ) ) )
2824, 27ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ( `' S " { g } )  <-> 
( b  e.  dom  S  /\  ( S `  b )  =  g ) )
29 eqtr3 2643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S `  r
)  =  g  /\  ( S `  b )  =  g )  -> 
( S `  r
)  =  ( S `
 b ) )
301, 2, 3, 4, 14, 15efgred 18161 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  dom  S  /\  b  e.  dom  S  /\  ( S `  r )  =  ( S `  b ) )  ->  ( r `  0 )  =  ( b `  0
) )
3130eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( r  e.  dom  S  /\  b  e.  dom  S  /\  ( S `  r )  =  ( S `  b ) )  ->  ( b `  0 )  =  ( r `  0
) )
32313expa 1265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( r  e.  dom  S  /\  b  e.  dom  S )  /\  ( S `
 r )  =  ( S `  b
) )  ->  (
b `  0 )  =  ( r ` 
0 ) )
3329, 32sylan2 491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( r  e.  dom  S  /\  b  e.  dom  S )  /\  ( ( S `  r )  =  g  /\  ( S `  b )  =  g ) )  ->  ( b ` 
0 )  =  ( r `  0 ) )
3433an4s 869 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( r  e.  dom  S  /\  ( S `  r )  =  g )  /\  ( b  e.  dom  S  /\  ( S `  b )  =  g ) )  ->  ( b ` 
0 )  =  ( r `  0 ) )
3526, 28, 34syl2anb 496 . . . . . . . . . . . . . . . . 17  |-  ( ( r  e.  ( `' S " { g } )  /\  b  e.  ( `' S " { g } ) )  ->  ( b `  0 )  =  ( r `  0
) )
36 eqeq2 2633 . . . . . . . . . . . . . . . . 17  |-  ( ( r `  0 )  =  ( s ` 
0 )  ->  (
( b `  0
)  =  ( r `
 0 )  <->  ( b `  0 )  =  ( s `  0
) ) )
3735, 36syl5ibcom 235 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  ( `' S " { g } )  /\  b  e.  ( `' S " { g } ) )  ->  ( (
r `  0 )  =  ( s ` 
0 )  ->  (
b `  0 )  =  ( s ` 
0 ) ) )
3837reximdv 3016 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  ( `' S " { g } )  /\  b  e.  ( `' S " { g } ) )  ->  ( E. s  e.  ( `' S " { h }
) ( r ` 
0 )  =  ( s `  0 )  ->  E. s  e.  ( `' S " { h } ) ( b `
 0 )  =  ( s `  0
) ) )
39 eqeq1 2626 . . . . . . . . . . . . . . . . 17  |-  ( ( a `  0 )  =  ( b ` 
0 )  ->  (
( a `  0
)  =  ( s `
 0 )  <->  ( b `  0 )  =  ( s `  0
) ) )
4039rexbidv 3052 . . . . . . . . . . . . . . . 16  |-  ( ( a `  0 )  =  ( b ` 
0 )  ->  ( E. s  e.  ( `' S " { h } ) ( a `
 0 )  =  ( s `  0
)  <->  E. s  e.  ( `' S " { h } ) ( b `
 0 )  =  ( s `  0
) ) )
4140imbi2d 330 . . . . . . . . . . . . . . 15  |-  ( ( a `  0 )  =  ( b ` 
0 )  ->  (
( E. s  e.  ( `' S " { h } ) ( r `  0
)  =  ( s `
 0 )  ->  E. s  e.  ( `' S " { h } ) ( a `
 0 )  =  ( s `  0
) )  <->  ( E. s  e.  ( `' S " { h }
) ( r ` 
0 )  =  ( s `  0 )  ->  E. s  e.  ( `' S " { h } ) ( b `
 0 )  =  ( s `  0
) ) ) )
4238, 41syl5ibrcom 237 . . . . . . . . . . . . . 14  |-  ( ( r  e.  ( `' S " { g } )  /\  b  e.  ( `' S " { g } ) )  ->  ( (
a `  0 )  =  ( b ` 
0 )  ->  ( E. s  e.  ( `' S " { h } ) ( r `
 0 )  =  ( s `  0
)  ->  E. s  e.  ( `' S " { h } ) ( a `  0
)  =  ( s `
 0 ) ) ) )
4342rexlimdva 3031 . . . . . . . . . . . . 13  |-  ( r  e.  ( `' S " { g } )  ->  ( E. b  e.  ( `' S " { g } ) ( a `  0
)  =  ( b `
 0 )  -> 
( E. s  e.  ( `' S " { h } ) ( r `  0
)  =  ( s `
 0 )  ->  E. s  e.  ( `' S " { h } ) ( a `
 0 )  =  ( s `  0
) ) ) )
4443impd 447 . . . . . . . . . . . 12  |-  ( r  e.  ( `' S " { g } )  ->  ( ( E. b  e.  ( `' S " { g } ) ( a `
 0 )  =  ( b `  0
)  /\  E. s  e.  ( `' S " { h } ) ( r `  0
)  =  ( s `
 0 ) )  ->  E. s  e.  ( `' S " { h } ) ( a `
 0 )  =  ( s `  0
) ) )
4544rexlimiv 3027 . . . . . . . . . . 11  |-  ( E. r  e.  ( `' S " { g } ) ( E. b  e.  ( `' S " { g } ) ( a `
 0 )  =  ( b `  0
)  /\  E. s  e.  ( `' S " { h } ) ( r `  0
)  =  ( s `
 0 ) )  ->  E. s  e.  ( `' S " { h } ) ( a `
 0 )  =  ( s `  0
) )
4645reximi 3011 . . . . . . . . . 10  |-  ( E. a  e.  ( `' S " { f } ) E. r  e.  ( `' S " { g } ) ( E. b  e.  ( `' S " { g } ) ( a `  0
)  =  ( b `
 0 )  /\  E. s  e.  ( `' S " { h } ) ( r `
 0 )  =  ( s `  0
) )  ->  E. a  e.  ( `' S " { f } ) E. s  e.  ( `' S " { h } ) ( a `
 0 )  =  ( s `  0
) )
4721, 46sylbir 225 . . . . . . . . 9  |-  ( ( E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { g } ) ( a `  0
)  =  ( b `
 0 )  /\  E. r  e.  ( `' S " { g } ) E. s  e.  ( `' S " { h } ) ( r `  0
)  =  ( s `
 0 ) )  ->  E. a  e.  ( `' S " { f } ) E. s  e.  ( `' S " { h } ) ( a `  0
)  =  ( s `
 0 ) )
4816, 20, 47syl2anb 496 . . . . . . . 8  |-  ( ( f L g  /\  g L h )  ->  E. a  e.  ( `' S " { f } ) E. s  e.  ( `' S " { h } ) ( a `  0
)  =  ( s `
 0 ) )
491, 2, 3, 4, 14, 15, 6efgrelexlema 18162 . . . . . . . 8  |-  ( f L h  <->  E. a  e.  ( `' S " { f } ) E. s  e.  ( `' S " { h } ) ( a `
 0 )  =  ( s `  0
) )
5048, 49sylibr 224 . . . . . . 7  |-  ( ( f L g  /\  g L h )  -> 
f L h )
5150adantl 482 . . . . . 6  |-  ( ( T.  /\  ( f L g  /\  g L h ) )  ->  f L h )
52 eqid 2622 . . . . . . . . . . . 12  |-  ( a `
 0 )  =  ( a `  0
)
53 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( b  =  a  ->  (
b `  0 )  =  ( a ` 
0 ) )
5453eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( b  =  a  ->  (
( a `  0
)  =  ( b `
 0 )  <->  ( a `  0 )  =  ( a `  0
) ) )
5554rspcev 3309 . . . . . . . . . . . 12  |-  ( ( a  e.  ( `' S " { f } )  /\  (
a `  0 )  =  ( a ` 
0 ) )  ->  E. b  e.  ( `' S " { f } ) ( a `
 0 )  =  ( b `  0
) )
5652, 55mpan2 707 . . . . . . . . . . 11  |-  ( a  e.  ( `' S " { f } )  ->  E. b  e.  ( `' S " { f } ) ( a `
 0 )  =  ( b `  0
) )
5756pm4.71i 664 . . . . . . . . . 10  |-  ( a  e.  ( `' S " { f } )  <-> 
( a  e.  ( `' S " { f } )  /\  E. b  e.  ( `' S " { f } ) ( a ` 
0 )  =  ( b `  0 ) ) )
58 fniniseg 6338 . . . . . . . . . . 11  |-  ( S  Fn  dom  S  -> 
( a  e.  ( `' S " { f } )  <->  ( a  e.  dom  S  /\  ( S `  a )  =  f ) ) )
5924, 58ax-mp 5 . . . . . . . . . 10  |-  ( a  e.  ( `' S " { f } )  <-> 
( a  e.  dom  S  /\  ( S `  a )  =  f ) )
6057, 59bitr3i 266 . . . . . . . . 9  |-  ( ( a  e.  ( `' S " { f } )  /\  E. b  e.  ( `' S " { f } ) ( a ` 
0 )  =  ( b `  0 ) )  <->  ( a  e. 
dom  S  /\  ( S `  a )  =  f ) )
6160rexbii2 3039 . . . . . . . 8  |-  ( E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { f } ) ( a `  0
)  =  ( b `
 0 )  <->  E. a  e.  dom  S ( S `
 a )  =  f )
621, 2, 3, 4, 14, 15, 6efgrelexlema 18162 . . . . . . . 8  |-  ( f L f  <->  E. a  e.  ( `' S " { f } ) E. b  e.  ( `' S " { f } ) ( a `
 0 )  =  ( b `  0
) )
63 forn 6118 . . . . . . . . . . 11  |-  ( S : dom  S -onto-> W  ->  ran  S  =  W )
6422, 63ax-mp 5 . . . . . . . . . 10  |-  ran  S  =  W
6564eleq2i 2693 . . . . . . . . 9  |-  ( f  e.  ran  S  <->  f  e.  W )
66 fvelrnb 6243 . . . . . . . . . 10  |-  ( S  Fn  dom  S  -> 
( f  e.  ran  S  <->  E. a  e.  dom  S ( S `  a
)  =  f ) )
6724, 66ax-mp 5 . . . . . . . . 9  |-  ( f  e.  ran  S  <->  E. a  e.  dom  S ( S `
 a )  =  f )
6865, 67bitr3i 266 . . . . . . . 8  |-  ( f  e.  W  <->  E. a  e.  dom  S ( S `
 a )  =  f )
6961, 62, 683bitr4ri 293 . . . . . . 7  |-  ( f  e.  W  <->  f L
f )
7069a1i 11 . . . . . 6  |-  ( T. 
->  ( f  e.  W  <->  f L f ) )
718, 19, 51, 70iserd 7768 . . . . 5  |-  ( T. 
->  L  Er  W
)
7271trud 1493 . . . 4  |-  L  Er  W
73 simpl 473 . . . . . . . . . . 11  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  a  e.  W
)
74 foelrn 6378 . . . . . . . . . . 11  |-  ( ( S : dom  S -onto-> W  /\  a  e.  W
)  ->  E. r  e.  dom  S  a  =  ( S `  r
) )
7522, 73, 74sylancr 695 . . . . . . . . . 10  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  E. r  e.  dom  S  a  =  ( S `
 r ) )
76 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  r  e.  dom  S )
77 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  a  =  ( S `  r ) )
7877eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( S `  r )  =  a )
79 fniniseg 6338 . . . . . . . . . . . . . . 15  |-  ( S  Fn  dom  S  -> 
( r  e.  ( `' S " { a } )  <->  ( r  e.  dom  S  /\  ( S `  r )  =  a ) ) )
8024, 79ax-mp 5 . . . . . . . . . . . . . 14  |-  ( r  e.  ( `' S " { a } )  <-> 
( r  e.  dom  S  /\  ( S `  r )  =  a ) )
8176, 78, 80sylanbrc 698 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  r  e.  ( `' S " { a } ) )
82 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  b  e.  ran  ( T `  a ) )
8377fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( T `  a )  =  ( T `  ( S `
 r ) ) )
8483rneqd 5353 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ran  ( T `  a )  =  ran  ( T `  ( S `
 r ) ) )
8582, 84eleqtrd 2703 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  b  e.  ran  ( T `  ( S `
 r ) ) )
861, 2, 3, 4, 14, 15efgsp1 18150 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  dom  S  /\  b  e.  ran  ( T `  ( S `
 r ) ) )  ->  ( r ++  <" b "> )  e.  dom  S )
8776, 85, 86syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( r ++  <" b "> )  e.  dom  S )
881, 2, 3, 4, 14, 15efgsdm 18143 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  dom  S  <->  ( r  e.  (Word  W  \  { (/)
} )  /\  (
r `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  r ) ) ( r `  i )  e.  ran  ( T `
 ( r `  ( i  -  1 ) ) ) ) )
8988simp1bi 1076 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  dom  S  -> 
r  e.  (Word  W  \  { (/) } ) )
9089ad2antrl 764 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  r  e.  (Word 
W  \  { (/) } ) )
9190eldifad 3586 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  r  e. Word  W
)
921, 2, 3, 4efgtf 18135 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  W  ->  (
( T `  a
)  =  ( f  e.  ( 0 ... ( # `  a
) ) ,  g  e.  ( I  X.  2o )  |->  ( a splice  <. f ,  f , 
<" g ( M `
 g ) "> >. ) )  /\  ( T `  a ) : ( ( 0 ... ( # `  a
) )  X.  (
I  X.  2o ) ) --> W ) )
9392simprd 479 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  W  ->  ( T `  a ) : ( ( 0 ... ( # `  a
) )  X.  (
I  X.  2o ) ) --> W )
94 frn 6053 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T `  a ) : ( ( 0 ... ( # `  a
) )  X.  (
I  X.  2o ) ) --> W  ->  ran  ( T `  a ) 
C_  W )
9593, 94syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  W  ->  ran  ( T `  a ) 
C_  W )
9695sselda 3603 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  b  e.  W
)
9796adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  b  e.  W
)
981, 2, 3, 4, 14, 15efgsval2 18146 . . . . . . . . . . . . . . . 16  |-  ( ( r  e. Word  W  /\  b  e.  W  /\  ( r ++  <" b "> )  e.  dom  S )  ->  ( S `  ( r ++  <" b "> ) )  =  b )
9991, 97, 87, 98syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( S `  ( r ++  <" b "> ) )  =  b )
100 fniniseg 6338 . . . . . . . . . . . . . . . 16  |-  ( S  Fn  dom  S  -> 
( ( r ++  <" b "> )  e.  ( `' S " { b } )  <-> 
( ( r ++  <" b "> )  e.  dom  S  /\  ( S `  ( r ++  <" b "> ) )  =  b ) ) )
10124, 100ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( r ++  <" b "> )  e.  ( `' S " { b } )  <->  ( (
r ++  <" b "> )  e.  dom  S  /\  ( S `  ( r ++  <" b "> ) )  =  b ) )
10287, 99, 101sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( r ++  <" b "> )  e.  ( `' S " { b } ) )
10397s1cld 13383 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  <" b ">  e. Word  W )
104 eldifsn 4317 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  (Word  W  \  { (/) } )  <->  ( r  e. Word  W  /\  r  =/=  (/) ) )
105 lennncl 13325 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e. Word  W  /\  r  =/=  (/) )  ->  ( # `
 r )  e.  NN )
106104, 105sylbi 207 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  (Word  W  \  { (/) } )  -> 
( # `  r )  e.  NN )
10790, 106syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( # `  r
)  e.  NN )
108 lbfzo0 12507 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  ( 0..^ (
# `  r )
)  <->  ( # `  r
)  e.  NN )
109107, 108sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  0  e.  ( 0..^ ( # `  r
) ) )
110 ccatval1 13361 . . . . . . . . . . . . . . . 16  |-  ( ( r  e. Word  W  /\  <" b ">  e. Word  W  /\  0  e.  ( 0..^ ( # `  r ) ) )  ->  ( ( r ++ 
<" b "> ) `  0 )  =  ( r ` 
0 ) )
11191, 103, 109, 110syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( ( r ++ 
<" b "> ) `  0 )  =  ( r ` 
0 ) )
112111eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( r ` 
0 )  =  ( ( r ++  <" b "> ) `  0
) )
113 fveq1 6190 . . . . . . . . . . . . . . . 16  |-  ( s  =  ( r ++  <" b "> )  ->  ( s `  0
)  =  ( ( r ++  <" b "> ) `  0
) )
114113eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( s  =  ( r ++  <" b "> )  ->  ( ( r ` 
0 )  =  ( s `  0 )  <-> 
( r `  0
)  =  ( ( r ++  <" b "> ) `  0
) ) )
115114rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( ( r ++  <" b "> )  e.  ( `' S " { b } )  /\  (
r `  0 )  =  ( ( r ++ 
<" b "> ) `  0 )
)  ->  E. s  e.  ( `' S " { b } ) ( r `  0
)  =  ( s `
 0 ) )
116102, 112, 115syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  E. s  e.  ( `' S " { b } ) ( r `
 0 )  =  ( s `  0
) )
11781, 116jca 554 . . . . . . . . . . . 12  |-  ( ( ( a  e.  W  /\  b  e.  ran  ( T `  a ) )  /\  ( r  e.  dom  S  /\  a  =  ( S `  r ) ) )  ->  ( r  e.  ( `' S " { a } )  /\  E. s  e.  ( `' S " { b } ) ( r `  0
)  =  ( s `
 0 ) ) )
118117ex 450 . . . . . . . . . . 11  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  ( ( r  e.  dom  S  /\  a  =  ( S `  r ) )  -> 
( r  e.  ( `' S " { a } )  /\  E. s  e.  ( `' S " { b } ) ( r ` 
0 )  =  ( s `  0 ) ) ) )
119118reximdv2 3014 . . . . . . . . . 10  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  ( E. r  e.  dom  S  a  =  ( S `  r
)  ->  E. r  e.  ( `' S " { a } ) E. s  e.  ( `' S " { b } ) ( r `
 0 )  =  ( s `  0
) ) )
12075, 119mpd 15 . . . . . . . . 9  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  E. r  e.  ( `' S " { a } ) E. s  e.  ( `' S " { b } ) ( r `  0
)  =  ( s `
 0 ) )
1211, 2, 3, 4, 14, 15, 6efgrelexlema 18162 . . . . . . . . 9  |-  ( a L b  <->  E. r  e.  ( `' S " { a } ) E. s  e.  ( `' S " { b } ) ( r `
 0 )  =  ( s `  0
) )
122120, 121sylibr 224 . . . . . . . 8  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  a L b )
123 vex 3203 . . . . . . . . 9  |-  b  e. 
_V
124 vex 3203 . . . . . . . . 9  |-  a  e. 
_V
125123, 124elec 7786 . . . . . . . 8  |-  ( b  e.  [ a ] L  <->  a L b )
126122, 125sylibr 224 . . . . . . 7  |-  ( ( a  e.  W  /\  b  e.  ran  ( T `
 a ) )  ->  b  e.  [
a ] L )
127126ex 450 . . . . . 6  |-  ( a  e.  W  ->  (
b  e.  ran  ( T `  a )  ->  b  e.  [ a ] L ) )
128127ssrdv 3609 . . . . 5  |-  ( a  e.  W  ->  ran  ( T `  a ) 
C_  [ a ] L )
129128rgen 2922 . . . 4  |-  A. a  e.  W  ran  ( T `
 a )  C_  [ a ] L
130 fvex 6201 . . . . . . 7  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
1311, 130eqeltri 2697 . . . . . 6  |-  W  e. 
_V
132 erex 7766 . . . . . 6  |-  ( L  Er  W  ->  ( W  e.  _V  ->  L  e.  _V ) )
13372, 131, 132mp2 9 . . . . 5  |-  L  e. 
_V
134 ereq1 7749 . . . . . 6  |-  ( r  =  L  ->  (
r  Er  W  <->  L  Er  W ) )
135 eceq2 7784 . . . . . . . 8  |-  ( r  =  L  ->  [ a ] r  =  [
a ] L )
136135sseq2d 3633 . . . . . . 7  |-  ( r  =  L  ->  ( ran  ( T `  a
)  C_  [ a ] r  <->  ran  ( T `
 a )  C_  [ a ] L ) )
137136ralbidv 2986 . . . . . 6  |-  ( r  =  L  ->  ( A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r  <->  A. a  e.  W  ran  ( T `
 a )  C_  [ a ] L ) )
138134, 137anbi12d 747 . . . . 5  |-  ( r  =  L  ->  (
( r  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r )  <->  ( L  Er  W  /\  A. a  e.  W  ran  ( T `
 a )  C_  [ a ] L ) ) )
139133, 138elab 3350 . . . 4  |-  ( L  e.  { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r ) }  <-> 
( L  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] L ) )
14072, 129, 139mpbir2an 955 . . 3  |-  L  e. 
{ r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }
141 intss1 4492 . . 3  |-  ( L  e.  { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r ) }  ->  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r ) } 
C_  L )
142140, 141ax-mp 5 . 2  |-  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r ) }  C_  L
1435, 142eqsstri 3635 1  |-  .~  C_  L
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   |^|cint 4475   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Rel wrel 5119    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   [cec 7740   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-efg 18122
This theorem is referenced by:  efgrelex  18164
  Copyright terms: Public domain W3C validator