Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo Structured version   Visualization version   Unicode version

Theorem elbigo 42345
Description: Properties of a function of order G(x). (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
elbigo  |-  ( F  e.  (_O `  G
)  <->  ( F  e.  ( RR  ^pm  RR )  /\  G  e.  ( RR  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) ) )
Distinct variable groups:    x, G, m, y    m, F, x, y

Proof of Theorem elbigo
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bigoval 42343 . . . . 5  |-  ( G  e.  ( RR  ^pm  RR )  ->  (_O `  G
)  =  { f  e.  ( RR  ^pm  RR )  |  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( f `
 y )  <_ 
( m  x.  ( G `  y )
) } )
21eleq2d 2687 . . . 4  |-  ( G  e.  ( RR  ^pm  RR )  ->  ( F  e.  (_O `  G )  <-> 
F  e.  { f  e.  ( RR  ^pm  RR )  |  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( f `
 y )  <_ 
( m  x.  ( G `  y )
) } ) )
3 dmeq 5324 . . . . . . . 8  |-  ( f  =  F  ->  dom  f  =  dom  F )
43ineq1d 3813 . . . . . . 7  |-  ( f  =  F  ->  ( dom  f  i^i  (
x [,) +oo )
)  =  ( dom 
F  i^i  ( x [,) +oo ) ) )
5 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
65breq1d 4663 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  y
)  <_  ( m  x.  ( G `  y
) )  <->  ( F `  y )  <_  (
m  x.  ( G `
 y ) ) ) )
74, 6raleqbidv 3152 . . . . . 6  |-  ( f  =  F  ->  ( A. y  e.  ( dom  f  i^i  (
x [,) +oo )
) ( f `  y )  <_  (
m  x.  ( G `
 y ) )  <->  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `  y
)  <_  ( m  x.  ( G `  y
) ) ) )
872rexbidv 3057 . . . . 5  |-  ( f  =  F  ->  ( E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( f `
 y )  <_ 
( m  x.  ( G `  y )
)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) ) )
98elrab 3363 . . . 4  |-  ( F  e.  { f  e.  ( RR  ^pm  RR )  |  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( f `
 y )  <_ 
( m  x.  ( G `  y )
) }  <->  ( F  e.  ( RR  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) ) )
102, 9syl6bb 276 . . 3  |-  ( G  e.  ( RR  ^pm  RR )  ->  ( F  e.  (_O `  G )  <-> 
( F  e.  ( RR  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) ) ) )
1110pm5.32i 669 . 2  |-  ( ( G  e.  ( RR 
^pm  RR )  /\  F  e.  (_O `  G ) )  <->  ( G  e.  ( RR  ^pm  RR )  /\  ( F  e.  ( RR  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) ) ) )
12 elbigofrcl 42344 . . 3  |-  ( F  e.  (_O `  G
)  ->  G  e.  ( RR  ^pm  RR ) )
1312pm4.71ri 665 . 2  |-  ( F  e.  (_O `  G
)  <->  ( G  e.  ( RR  ^pm  RR )  /\  F  e.  (_O
`  G ) ) )
14 3anan12 1051 . 2  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  G  e.  ( RR  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) )  <->  ( G  e.  ( RR  ^pm  RR )  /\  ( F  e.  ( RR  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) ) ) )
1511, 13, 143bitr4i 292 1  |-  ( F  e.  (_O `  G
)  <->  ( F  e.  ( RR  ^pm  RR )  /\  G  e.  ( RR  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( F `
 y )  <_ 
( m  x.  ( G `  y )
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   RRcr 9935    x. cmul 9941   +oocpnf 10071    <_ cle 10075   [,)cico 12177  _Ocbigo 42341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-bigo 42342
This theorem is referenced by:  elbigo2  42346  elbigof  42348  elbigodm  42349
  Copyright terms: Public domain W3C validator