Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvlem Structured version   Visualization version   Unicode version

Theorem elcnvcnvlem 37905
Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvlem  |-  ( A  e.  `' `' B  <->  ( A  e.  ( _V 
X.  _V )  /\  (  _I  `  A )  e.  B ) )

Proof of Theorem elcnvcnvlem
StepHypRef Expression
1 cnvcnv 5586 . . . 4  |-  `' `' B  =  ( B  i^i  ( _V  X.  _V ) )
2 incom 3805 . . . 4  |-  ( B  i^i  ( _V  X.  _V ) )  =  ( ( _V  X.  _V )  i^i  B )
31, 2eqtri 2644 . . 3  |-  `' `' B  =  ( ( _V  X.  _V )  i^i 
B )
43eleq2i 2693 . 2  |-  ( A  e.  `' `' B  <->  A  e.  ( ( _V 
X.  _V )  i^i  B
) )
5 elinlem 37904 . 2  |-  ( A  e.  ( ( _V 
X.  _V )  i^i  B
)  <->  ( A  e.  ( _V  X.  _V )  /\  (  _I  `  A )  e.  B
) )
64, 5bitri 264 1  |-  ( A  e.  `' `' B  <->  ( A  e.  ( _V 
X.  _V )  /\  (  _I  `  A )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990   _Vcvv 3200    i^i cin 3573    _I cid 5023    X. cxp 5112   `'ccnv 5113   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator