| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvcnvintabd | Structured version Visualization version Unicode version | ||
| Description: Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
| Ref | Expression |
|---|---|
| cnvcnvintabd.x |
|
| Ref | Expression |
|---|---|
| cnvcnvintabd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 5586 |
. . . . . . . . . 10
| |
| 2 | 1 | eleq2i 2693 |
. . . . . . . . 9
|
| 3 | elin 3796 |
. . . . . . . . . 10
| |
| 4 | 3 | rbaib 947 |
. . . . . . . . 9
|
| 5 | 2, 4 | syl5bb 272 |
. . . . . . . 8
|
| 6 | 5 | bicomd 213 |
. . . . . . 7
|
| 7 | 6 | imbi2d 330 |
. . . . . 6
|
| 8 | 7 | albidv 1849 |
. . . . 5
|
| 9 | 8 | pm5.32i 669 |
. . . 4
|
| 10 | cnvcnvintabd.x |
. . . . . . 7
| |
| 11 | pm5.5 351 |
. . . . . . 7
| |
| 12 | 10, 11 | syl 17 |
. . . . . 6
|
| 13 | 12 | bicomd 213 |
. . . . 5
|
| 14 | 13 | anbi1d 741 |
. . . 4
|
| 15 | 9, 14 | syl5bb 272 |
. . 3
|
| 16 | elcnvcnvintab 37888 |
. . 3
| |
| 17 | vex 3203 |
. . . 4
| |
| 18 | vex 3203 |
. . . . . 6
| |
| 19 | cnvexg 7112 |
. . . . . 6
| |
| 20 | cnvexg 7112 |
. . . . . 6
| |
| 21 | 18, 19, 20 | mp2b 10 |
. . . . 5
|
| 22 | relcnv 5503 |
. . . . . 6
| |
| 23 | df-rel 5121 |
. . . . . 6
| |
| 24 | 22, 23 | mpbi 220 |
. . . . 5
|
| 25 | 21, 24 | elmapintrab 37882 |
. . . 4
|
| 26 | 17, 25 | ax-mp 5 |
. . 3
|
| 27 | 15, 16, 26 | 3bitr4g 303 |
. 2
|
| 28 | 27 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |