MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgz Structured version   Visualization version   Unicode version

Theorem elgz 15635
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
elgz  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )

Proof of Theorem elgz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  (
Re `  x )  =  ( Re `  A ) )
21eleq1d 2686 . . . 4  |-  ( x  =  A  ->  (
( Re `  x
)  e.  ZZ  <->  ( Re `  A )  e.  ZZ ) )
3 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  (
Im `  x )  =  ( Im `  A ) )
43eleq1d 2686 . . . 4  |-  ( x  =  A  ->  (
( Im `  x
)  e.  ZZ  <->  ( Im `  A )  e.  ZZ ) )
52, 4anbi12d 747 . . 3  |-  ( x  =  A  ->  (
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ )  <-> 
( ( Re `  A )  e.  ZZ  /\  ( Im `  A
)  e.  ZZ ) ) )
6 df-gz 15634 . . 3  |-  ZZ[_i]  =  {
x  e.  CC  | 
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ ) }
75, 6elrab2 3366 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
8 3anass 1042 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ )  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
97, 8bitr4i 267 1  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888   CCcc 9934   ZZcz 11377   Recre 13837   Imcim 13838   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-gz 15634
This theorem is referenced by:  gzcn  15636  zgz  15637  igz  15638  gznegcl  15639  gzcjcl  15640  gzaddcl  15641  gzmulcl  15642  gzabssqcl  15645  4sqlem4a  15655  2sqlem2  25143  2sqlem3  25145  cntotbnd  33595
  Copyright terms: Public domain W3C validator