MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Structured version   Visualization version   Unicode version

Theorem 2sqlem2 25143
Description: Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
2sqlem2  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable groups:    x, w, y    x, A, y    x, S, y
Allowed substitution hints:    A( w)    S( w)

Proof of Theorem 2sqlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 25142 . . 3  |-  ( A  e.  S  <->  E. z  e.  ZZ[_i]  A  =  ( ( abs `  z ) ^
2 ) )
3 elgz 15635 . . . . . . 7  |-  ( z  e.  ZZ[_i]  <->  ( z  e.  CC  /\  ( Re
`  z )  e.  ZZ  /\  ( Im
`  z )  e.  ZZ ) )
43simp2bi 1077 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Re `  z )  e.  ZZ )
53simp3bi 1078 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Im `  z )  e.  ZZ )
6 gzcn 15636 . . . . . . 7  |-  ( z  e.  ZZ[_i]  ->  z  e.  CC )
76absvalsq2d 14182 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
8 oveq1 6657 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x ^ 2 )  =  ( ( Re
`  z ) ^
2 ) )
98oveq1d 6665 . . . . . . . 8  |-  ( x  =  ( Re `  z )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) )
109eqeq2d 2632 . . . . . . 7  |-  ( x  =  ( Re `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) ) )
11 oveq1 6657 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
y ^ 2 )  =  ( ( Im
`  z ) ^
2 ) )
1211oveq2d 6666 . . . . . . . 8  |-  ( y  =  ( Im `  z )  ->  (
( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
1312eqeq2d 2632 . . . . . . 7  |-  ( y  =  ( Im `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) ) )
1410, 13rspc2ev 3324 . . . . . 6  |-  ( ( ( Re `  z
)  e.  ZZ  /\  ( Im `  z )  e.  ZZ  /\  (
( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
154, 5, 7, 14syl3anc 1326 . . . . 5  |-  ( z  e.  ZZ[_i]  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( abs `  z ) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
16 eqeq1 2626 . . . . . 6  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
17162rexbidv 3057 . . . . 5  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1815, 17syl5ibrcom 237 . . . 4  |-  ( z  e.  ZZ[_i]  ->  ( A  =  ( ( abs `  z ) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1918rexlimiv 3027 . . 3  |-  ( E. z  e.  ZZ[_i]  A  =  ( ( abs `  z
) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
202, 19sylbi 207 . 2  |-  ( A  e.  S  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
21 gzreim 15643 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  ZZ[_i] )
22 zcn 11382 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 ax-icn 9995 . . . . . . . . . 10  |-  _i  e.  CC
24 zcn 11382 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
25 mulcl 10020 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
2623, 24, 25sylancr 695 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
_i  x.  y )  e.  CC )
27 addcl 10018 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( x  +  ( _i  x.  y
) )  e.  CC )
2822, 26, 27syl2an 494 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
2928absvalsq2d 14182 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 )  =  ( ( ( Re `  ( x  +  ( _i  x.  y ) ) ) ^ 2 )  +  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 ) ) )
30 zre 11381 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
31 zre 11381 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  RR )
32 crre 13854 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3330, 31, 32syl2an 494 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3433oveq1d 6665 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( x ^ 2 ) )
35 crim 13855 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3630, 31, 35syl2an 494 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3736oveq1d 6665 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( y ^ 2 ) )
3834, 37oveq12d 6668 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( Re
`  ( x  +  ( _i  x.  y
) ) ) ^
2 )  +  ( ( Im `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
3929, 38eqtr2d 2657 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
40 fveq2 6191 . . . . . . . . 9  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  ( abs `  z )  =  ( abs `  (
x  +  ( _i  x.  y ) ) ) )
4140oveq1d 6665 . . . . . . . 8  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
4241eqeq2d 2632 . . . . . . 7  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 )  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  =  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) ) )
4342rspcev 3309 . . . . . 6  |-  ( ( ( x  +  ( _i  x.  y ) )  e.  ZZ[_i]  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )  ->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4421, 39, 43syl2anc 693 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  E. z  e.  ZZ[_i]  ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4512sqlem1 25142 . . . . 5  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  S  <->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4644, 45sylibr 224 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  S )
47 eleq1 2689 . . . 4  |-  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  ( A  e.  S  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  S ) )
4846, 47syl5ibrcom 237 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S
) )
4948rexlimivv 3036 . 2  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S )
5020, 49impbii 199 1  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   _ici 9938    + caddc 9939    x. cmul 9941   2c2 11070   ZZcz 11377   ^cexp 12860   Recre 13837   Imcim 13838   abscabs 13974   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-gz 15634
This theorem is referenced by:  2sqlem5  25147  2sqlem7  25149  2sq  25155
  Copyright terms: Public domain W3C validator