MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem3 Structured version   Visualization version   Unicode version

Theorem 2sqlem3 25145
Description: Lemma for 2sqlem5 25147. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
2sqlem4.9  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
Assertion
Ref Expression
2sqlem3  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2sqlem4.3 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
2 2sqlem4.4 . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
3 gzreim 15643 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
41, 2, 3syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
5 2sqlem4.5 . . . . . . . 8  |-  ( ph  ->  C  e.  ZZ )
6 2sqlem4.6 . . . . . . . 8  |-  ( ph  ->  D  e.  ZZ )
7 gzreim 15643 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
85, 6, 7syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
9 gzmulcl 15642 . . . . . . 7  |-  ( ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  /\  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]
)  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
104, 8, 9syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
11 gzcn 15636 . . . . . 6  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
1210, 11syl 17 . . . . 5  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
13 2sqlem5.2 . . . . . . 7  |-  ( ph  ->  P  e.  Prime )
14 prmnn 15388 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
1513, 14syl 17 . . . . . 6  |-  ( ph  ->  P  e.  NN )
1615nncnd 11036 . . . . 5  |-  ( ph  ->  P  e.  CC )
1715nnne0d 11065 . . . . 5  |-  ( ph  ->  P  =/=  0 )
1812, 16, 17divcld 10801 . . . 4  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC )
1915nnred 11035 . . . . . 6  |-  ( ph  ->  P  e.  RR )
2019, 12, 17redivd 13969 . . . . 5  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
21 prmz 15389 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2213, 21syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  ZZ )
23 dvdsmul2 15004 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ )  ->  P  ||  ( P  x.  P ) )
2422, 22, 23syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( P  x.  P ) )
2516sqvald 13005 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ 2 )  =  ( P  x.  P ) )
2624, 25breqtrrd 4681 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( P ^ 2 ) )
27 2sqlem5.1 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
2827nnzd 11481 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
29 zsqcl 12934 . . . . . . . . . . . . 13  |-  ( P  e.  ZZ  ->  ( P ^ 2 )  e.  ZZ )
3022, 29syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ 2 )  e.  ZZ )
31 dvdsmul2 15004 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( P ^ 2 )  e.  ZZ )  -> 
( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3228, 30, 31syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3328, 30zmulcld 11488 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  e.  ZZ )
34 dvdstr 15018 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  ( P ^ 2 )  e.  ZZ  /\  ( N  x.  ( P ^ 2 ) )  e.  ZZ )  -> 
( ( P  ||  ( P ^ 2 )  /\  ( P ^
2 )  ||  ( N  x.  ( P ^ 2 ) ) )  ->  P  ||  ( N  x.  ( P ^ 2 ) ) ) )
3522, 30, 33, 34syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  ||  ( P ^ 2 )  /\  ( P ^
2 )  ||  ( N  x.  ( P ^ 2 ) ) )  ->  P  ||  ( N  x.  ( P ^ 2 ) ) ) )
3626, 32, 35mp2and 715 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( N  x.  ( P ^
2 ) ) )
37 gzcn 15636 . . . . . . . . . . . . . . . 16  |-  ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
384, 37syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
3938abscld 14175 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
4039recnd 10068 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
41 gzcn 15636 . . . . . . . . . . . . . . . 16  |-  ( ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
428, 41syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
4342abscld 14175 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  RR )
4443recnd 10068 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  CC )
4540, 44sqmuld 13020 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
461zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR )
472zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR )
4846, 47crred 13971 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
4948oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( A ^ 2 ) )
5046, 47crimd 13972 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
5150oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( B ^ 2 ) )
5249, 51oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
5338absvalsq2d 14182 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) ) )
54 2sqlem4.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
5552, 53, 543eqtr4d 2666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( N  x.  P
) )
565zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  C  e.  RR )
576zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  e.  RR )
5856, 57crred 13971 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( C  +  ( _i  x.  D ) ) )  =  C )
5958oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( C ^ 2 ) )
6056, 57crimd 13972 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( C  +  ( _i  x.  D ) ) )  =  D )
6160oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( D ^ 2 ) )
6259, 61oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
6342absvalsq2d 14182 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
64 2sqlem4.8 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
6562, 63, 643eqtr4d 2666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  P )
6655, 65oveq12d 6668 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( N  x.  P )  x.  P ) )
6727nncnd 11036 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
6867, 16, 16mulassd 10063 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  x.  P )  x.  P
)  =  ( N  x.  ( P  x.  P ) ) )
6945, 66, 683eqtrd 2660 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( N  x.  ( P  x.  P )
) )
7038, 42absmuld 14193 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) )
7170oveq1d 6665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )
7225oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  =  ( N  x.  ( P  x.  P
) ) )
7369, 71, 723eqtr4d 2666 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( N  x.  ( P ^ 2 ) ) )
7436, 73breqtrrd 4681 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( abs `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
7512absvalsq2d 14182 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
76 elgz 15635 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  <->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  e.  CC  /\  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ ) )
7776simp2bi 1077 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
7810, 77syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
79 zsqcl 12934 . . . . . . . . . . . . 13  |-  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8078, 79syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8180zcnd 11483 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8276simp3bi 1078 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
8310, 82syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
84 zsqcl 12934 . . . . . . . . . . . . 13  |-  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8583, 84syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8685zcnd 11483 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8781, 86addcomd 10238 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  +  ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )  =  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
8875, 87eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
8974, 88breqtrd 4679 . . . . . . . 8  |-  ( ph  ->  P  ||  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
90 2sqlem4.9 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
915zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  CC )
922zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  CC )
9391, 92mulcld 10060 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
941zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  CC )
956zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  CC )
9694, 95mulcld 10060 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
9793, 96addcomd 10238 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( C  x.  B ) ) )
9891, 92mulcomd 10061 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  =  ( B  x.  C ) )
9998oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10097, 99eqtrd 2656 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10190, 100breqtrd 4679 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10238, 42immuld 13959 . . . . . . . . . . . 12  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( ( Re `  ( A  +  ( _i  x.  B ) ) )  x.  ( Im `  ( C  +  (
_i  x.  D )
) ) )  +  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) ) ) )
10348, 60oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) )  x.  (
Im `  ( C  +  ( _i  x.  D ) ) ) )  =  ( A  x.  D ) )
10450, 58oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) )  =  ( B  x.  C ) )
105103, 104oveq12d 6668 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) )  x.  ( Im `  ( C  +  ( _i  x.  D ) ) ) )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) )  x.  ( Re `  ( C  +  (
_i  x.  D )
) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C
) ) )
106102, 105eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
107101, 106breqtrrd 4681 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
108 2nn 11185 . . . . . . . . . . . 12  |-  2  e.  NN
109108a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  NN )
110 prmdvdsexp 15427 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
11113, 83, 109, 110syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( P  ||  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
112107, 111mpbird 247 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
113 dvdsadd2b 15028 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11422, 80, 85, 112, 113syl112anc 1330 . . . . . . . 8  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11589, 114mpbird 247 . . . . . . 7  |-  ( ph  ->  P  ||  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
116 prmdvdsexp 15427 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
11713, 78, 109, 116syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
118115, 117mpbid 222 . . . . . 6  |-  ( ph  ->  P  ||  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
119 dvdsval2 14986 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
12022, 17, 78, 119syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
121118, 120mpbid 222 . . . . 5  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
12220, 121eqeltrd 2701 . . . 4  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
12319, 12, 17imdivd 13970 . . . . 5  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
124 dvdsval2 14986 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
12522, 17, 83, 124syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
126107, 125mpbid 222 . . . . 5  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
127123, 126eqeltrd 2701 . . . 4  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
128 elgz 15635 . . . 4  |-  ( ( ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P )  e.  ZZ[_i]  <->  ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC  /\  ( Re `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ  /\  (
Im `  ( (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ ) )
12918, 122, 127, 128syl3anbrc 1246 . . 3  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i] )
13012, 16, 17absdivd 14194 . . . . . 6  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) ) )
13115nnnn0d 11351 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN0 )
132131nn0ge0d 11354 . . . . . . . 8  |-  ( ph  ->  0  <_  P )
13319, 132absidd 14161 . . . . . . 7  |-  ( ph  ->  ( abs `  P
)  =  P )
134133oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) )  =  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
135130, 134eqtrd 2656 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
136135oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 ) )
13712abscld 14175 . . . . . 6  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  RR )
138137recnd 10068 . . . . 5  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  CC )
139138, 16, 17sqdivd 13021 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) ) )
14073oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) ) )
14115nnsqcld 13029 . . . . . . 7  |-  ( ph  ->  ( P ^ 2 )  e.  NN )
142141nncnd 11036 . . . . . 6  |-  ( ph  ->  ( P ^ 2 )  e.  CC )
143141nnne0d 11065 . . . . . 6  |-  ( ph  ->  ( P ^ 2 )  =/=  0 )
14467, 142, 143divcan4d 10807 . . . . 5  |-  ( ph  ->  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) )  =  N )
145140, 144eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  N )
146136, 139, 1453eqtrrd 2661 . . 3  |-  ( ph  ->  N  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )
147 fveq2 6191 . . . . . 6  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  ( abs `  x )  =  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) )
148147oveq1d 6665 . . . . 5  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  (
( abs `  x
) ^ 2 )  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
) ) ^ 2 ) )
149148eqeq2d 2632 . . . 4  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  ( N  =  ( ( abs `  x ) ^
2 )  <->  N  =  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) ) )
150149rspcev 3309 . . 3  |-  ( ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i]  /\  N  =  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
151129, 146, 150syl2anc 693 . 2  |-  ( ph  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
152 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
1531522sqlem1 25142 . 2  |-  ( N  e.  S  <->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^
2 ) )
154151, 153sylibr 224 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ^cexp 12860   Recre 13837   Imcim 13838   abscabs 13974    || cdvds 14983   Primecprime 15385   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-gz 15634
This theorem is referenced by:  2sqlem4  25146
  Copyright terms: Public domain W3C validator