Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicores Structured version   Visualization version   Unicode version

Theorem elicores 39760
Description: Membership in a left-closed, right-open interval with real bounds. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
elicores  |-  ( A  e.  ran  ( [,)  |`  ( RR  X.  RR ) )  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x [,) y ) )
Distinct variable group:    x, A, y

Proof of Theorem elicores
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ico 12181 . . . . . 6  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21reseq1i 5392 . . . . 5  |-  ( [,)  |`  ( RR  X.  RR ) )  =  ( ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )  |`  ( RR  X.  RR ) )
3 ressxr 10083 . . . . . 6  |-  RR  C_  RR*
4 resmpt2 6758 . . . . . 6  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  (
( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )  |`  ( RR  X.  RR ) )  =  ( x  e.  RR ,  y  e.  RR  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } ) )
53, 3, 4mp2an 708 . . . . 5  |-  ( ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )  |`  ( RR  X.  RR ) )  =  ( x  e.  RR ,  y  e.  RR  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } )
62, 5eqtri 2644 . . . 4  |-  ( [,)  |`  ( RR  X.  RR ) )  =  ( x  e.  RR , 
y  e.  RR  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } )
76rneqi 5352 . . 3  |-  ran  ( [,)  |`  ( RR  X.  RR ) )  =  ran  ( x  e.  RR ,  y  e.  RR  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } )
87eleq2i 2693 . 2  |-  ( A  e.  ran  ( [,)  |`  ( RR  X.  RR ) )  <->  A  e.  ran  ( x  e.  RR ,  y  e.  RR  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } ) )
9 eqid 2622 . . 3  |-  ( x  e.  RR ,  y  e.  RR  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )  =  ( x  e.  RR ,  y  e.  RR  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
10 xrex 11829 . . . 4  |-  RR*  e.  _V
1110rabex 4813 . . 3  |-  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) }  e.  _V
129, 11elrnmpt2 6773 . 2  |-  ( A  e.  ran  ( x  e.  RR ,  y  e.  RR  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )  <->  E. x  e.  RR  E. y  e.  RR  A  =  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } )
133sseli 3599 . . . . . . . 8  |-  ( x  e.  RR  ->  x  e.  RR* )
1413adantr 481 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  RR* )
153sseli 3599 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  RR* )
1615adantl 482 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  RR* )
17 icoval 12213 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x [,) y )  =  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
1814, 16, 17syl2anc 693 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x [,) y
)  =  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
1918eqcomd 2628 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) }  =  ( x [,) y ) )
2019eqeq2d 2632 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  {
z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) }  <-> 
A  =  ( x [,) y ) ) )
2120rexbidva 3049 . . 3  |-  ( x  e.  RR  ->  ( E. y  e.  RR  A  =  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) }  <->  E. y  e.  RR  A  =  ( x [,) y ) ) )
2221rexbiia 3040 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) }  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x [,) y ) )
238, 12, 223bitri 286 1  |-  ( A  e.  ran  ( [,)  |`  ( RR  X.  RR ) )  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x [,) y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-xr 10078  df-ico 12181
This theorem is referenced by:  icoresmbl  40757
  Copyright terms: Public domain W3C validator