Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inficc Structured version   Visualization version   Unicode version

Theorem inficc 39761
Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
inficc.a  |-  ( ph  ->  A  e.  RR* )
inficc.b  |-  ( ph  ->  B  e.  RR* )
inficc.s  |-  ( ph  ->  S  C_  ( A [,] B ) )
inficc.n0  |-  ( ph  ->  S  =/=  (/) )
Assertion
Ref Expression
inficc  |-  ( ph  -> inf ( S ,  RR* ,  <  )  e.  ( A [,] B ) )

Proof of Theorem inficc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inficc.a . 2  |-  ( ph  ->  A  e.  RR* )
2 inficc.b . 2  |-  ( ph  ->  B  e.  RR* )
3 inficc.s . . . 4  |-  ( ph  ->  S  C_  ( A [,] B ) )
4 iccssxr 12256 . . . . 5  |-  ( A [,] B )  C_  RR*
54a1i 11 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  RR* )
63, 5sstrd 3613 . . 3  |-  ( ph  ->  S  C_  RR* )
7 infxrcl 12163 . . 3  |-  ( S 
C_  RR*  -> inf ( S ,  RR* ,  <  )  e.  RR* )
86, 7syl 17 . 2  |-  ( ph  -> inf ( S ,  RR* ,  <  )  e.  RR* )
91adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR* )
102adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  RR* )
113sselda 3603 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  ( A [,] B
) )
12 iccgelb 12230 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  A  <_  x )
139, 10, 11, 12syl3anc 1326 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  A  <_  x )
1413ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  S  A  <_  x )
15 infxrgelb 12165 . . . 4  |-  ( ( S  C_  RR*  /\  A  e.  RR* )  ->  ( A  <_ inf ( S ,  RR* ,  <  )  <->  A. x  e.  S  A  <_  x ) )
166, 1, 15syl2anc 693 . . 3  |-  ( ph  ->  ( A  <_ inf ( S ,  RR* ,  <  )  <->  A. x  e.  S  A  <_  x ) )
1714, 16mpbird 247 . 2  |-  ( ph  ->  A  <_ inf ( S ,  RR* ,  <  )
)
18 inficc.n0 . . . 4  |-  ( ph  ->  S  =/=  (/) )
19 n0 3931 . . . 4  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
2018, 19sylib 208 . . 3  |-  ( ph  ->  E. x  x  e.  S )
218adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  -> inf ( S ,  RR* ,  <  )  e.  RR* )
224, 11sseldi 3601 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  RR* )
236adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  S  C_ 
RR* )
24 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
25 infxrlb 12164 . . . . . . 7  |-  ( ( S  C_  RR*  /\  x  e.  S )  -> inf ( S ,  RR* ,  <  )  <_  x )
2623, 24, 25syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  -> inf ( S ,  RR* ,  <  )  <_  x )
27 iccleub 12229 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  x  <_  B )
289, 10, 11, 27syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x  <_  B )
2921, 22, 10, 26, 28xrletrd 11993 . . . . 5  |-  ( (
ph  /\  x  e.  S )  -> inf ( S ,  RR* ,  <  )  <_  B )
3029ex 450 . . . 4  |-  ( ph  ->  ( x  e.  S  -> inf ( S ,  RR* ,  <  )  <_  B
) )
3130exlimdv 1861 . . 3  |-  ( ph  ->  ( E. x  x  e.  S  -> inf ( S ,  RR* ,  <  )  <_  B ) )
3220, 31mpd 15 . 2  |-  ( ph  -> inf ( S ,  RR* ,  <  )  <_  B
)
331, 2, 8, 17, 32eliccxrd 39753 1  |-  ( ph  -> inf ( S ,  RR* ,  <  )  e.  ( A [,] B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650  infcinf 8347   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-icc 12182
This theorem is referenced by:  ovnf  40777
  Copyright terms: Public domain W3C validator