MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliman0 Structured version   Visualization version   Unicode version

Theorem eliman0 6223
Description: A non-nul function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Assertion
Ref Expression
eliman0  |-  ( ( A  e.  B  /\  -.  ( F `  A
)  =  (/) )  -> 
( F `  A
)  e.  ( F
" B ) )

Proof of Theorem eliman0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvbr0 6215 . . . . 5  |-  ( A F ( F `  A )  \/  ( F `  A )  =  (/) )
2 orcom 402 . . . . 5  |-  ( ( A F ( F `
 A )  \/  ( F `  A
)  =  (/) )  <->  ( ( F `  A )  =  (/)  \/  A F ( F `  A
) ) )
31, 2mpbi 220 . . . 4  |-  ( ( F `  A )  =  (/)  \/  A F ( F `  A ) )
43ori 390 . . 3  |-  ( -.  ( F `  A
)  =  (/)  ->  A F ( F `  A ) )
5 breq1 4656 . . . 4  |-  ( x  =  A  ->  (
x F ( F `
 A )  <->  A F
( F `  A
) ) )
65rspcev 3309 . . 3  |-  ( ( A  e.  B  /\  A F ( F `  A ) )  ->  E. x  e.  B  x F ( F `  A ) )
74, 6sylan2 491 . 2  |-  ( ( A  e.  B  /\  -.  ( F `  A
)  =  (/) )  ->  E. x  e.  B  x F ( F `  A ) )
8 fvex 6201 . . 3  |-  ( F `
 A )  e. 
_V
98elima 5471 . 2  |-  ( ( F `  A )  e.  ( F " B )  <->  E. x  e.  B  x F
( F `  A
) )
107, 9sylibr 224 1  |-  ( ( A  e.  B  /\  -.  ( F `  A
)  =  (/) )  -> 
( F `  A
)  e.  ( F
" B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   (/)c0 3915   class class class wbr 4653   "cima 5117   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896
This theorem is referenced by:  ovima0  6813  setrec2fun  42439
  Copyright terms: Public domain W3C validator