| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapintrab | Structured version Visualization version Unicode version | ||
| Description: Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020.) |
| Ref | Expression |
|---|---|
| elmapintrab.ex |
|
| elmapintrab.sub |
|
| Ref | Expression |
|---|---|
| elmapintrab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintrabg 4489 |
. . 3
| |
| 2 | df-ral 2917 |
. . 3
| |
| 3 | 1, 2 | syl6bb 276 |
. 2
|
| 4 | selpw 4165 |
. . . . . 6
| |
| 5 | 19.23v 1902 |
. . . . . . 7
| |
| 6 | 5 | bicomi 214 |
. . . . . 6
|
| 7 | 4, 6 | imbi12i 340 |
. . . . 5
|
| 8 | 19.21v 1868 |
. . . . 5
| |
| 9 | bi2.04 376 |
. . . . . . 7
| |
| 10 | impexp 462 |
. . . . . . 7
| |
| 11 | 9, 10 | bitri 264 |
. . . . . 6
|
| 12 | 11 | albii 1747 |
. . . . 5
|
| 13 | 7, 8, 12 | 3bitr2i 288 |
. . . 4
|
| 14 | 13 | albii 1747 |
. . 3
|
| 15 | alcom 2037 |
. . 3
| |
| 16 | elmapintrab.ex |
. . . . . . 7
| |
| 17 | sseq1 3626 |
. . . . . . . . 9
| |
| 18 | eleq2 2690 |
. . . . . . . . . 10
| |
| 19 | elmapintrab.sub |
. . . . . . . . . . . 12
| |
| 20 | 19 | sseli 3599 |
. . . . . . . . . . 11
|
| 21 | 20 | pm4.71ri 665 |
. . . . . . . . . 10
|
| 22 | 18, 21 | syl6bb 276 |
. . . . . . . . 9
|
| 23 | 17, 22 | imbi12d 334 |
. . . . . . . 8
|
| 24 | 23 | imbi2d 330 |
. . . . . . 7
|
| 25 | 16, 24 | ceqsalv 3233 |
. . . . . 6
|
| 26 | bi2.04 376 |
. . . . . 6
| |
| 27 | pm5.5 351 |
. . . . . . . 8
| |
| 28 | 19, 27 | ax-mp 5 |
. . . . . . 7
|
| 29 | jcab 907 |
. . . . . . 7
| |
| 30 | 28, 29 | bitri 264 |
. . . . . 6
|
| 31 | 25, 26, 30 | 3bitri 286 |
. . . . 5
|
| 32 | 31 | albii 1747 |
. . . 4
|
| 33 | 19.26 1798 |
. . . 4
| |
| 34 | 19.23v 1902 |
. . . . 5
| |
| 35 | 34 | anbi1i 731 |
. . . 4
|
| 36 | 32, 33, 35 | 3bitri 286 |
. . 3
|
| 37 | 14, 15, 36 | 3bitri 286 |
. 2
|
| 38 | 3, 37 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-int 4476 |
| This theorem is referenced by: elinintrab 37883 cnvcnvintabd 37906 cnvintabd 37909 |
| Copyright terms: Public domain | W3C validator |